www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Fehlerbereich Näherungspolynom
Fehlerbereich Näherungspolynom < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fehlerbereich Näherungspolynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:16 So 14.04.2013
Autor: Mathe-Andi

Aufgabe
Bestimmen Sie den absoluten und relativen Fehlerberreich des Näherungspolynoms [mm] T_{5}(x) [/mm] der Funktion [mm] f(x)=x^{3}*ln(x) [/mm] für x=2 um den Entwicklungspunkt [mm] x_{0}=1. [/mm]

Hallo,

was ist mit absolutem und relativem Fehlerbereich gemeint? Bin ich schon auf dem richtigen Weg, wenn ich das Taylorpolynom [mm] T_{5}(x) [/mm] inklusive dem Restglied [mm] R_{n}(x) [/mm] aufgestellt habe?

[mm] T_{5}(x)=\bruch{1}{1!}(x-1)^{1}+\bruch{5}{2!}(x-1)^{2}+\bruch{11}{3!}(x-1)^{3}+\bruch{6}{4!}(x-1)^{4}-\bruch{6}{5!}(x-1)^{5} [/mm]

[mm] R_{n}(x)=|\bruch{f^{(6)}(\xi)}{6!}(x-1)^{6}|=|\bruch{\bruch{12}{\xi^{3}}}{6!}(x-1)^{6}|=|\bruch{12}{\xi^{3}*6!}(x-1)^{6}|=|\bruch{12}{\xi^{3}*5!*6}(x-1)^{6}|=|\bruch{2}{\xi^{3}*5!}(x-1)^{6}| [/mm]


Ich muss doch jetzt irgendwo x=2 einsetzen und damit was anstellen, richtig? Aber wo...

Gruß, Andreas



        
Bezug
Fehlerbereich Näherungspolynom: Antwort
Status: (Antwort) fertig Status 
Datum: 07:31 Mo 15.04.2013
Autor: fred97


> Bestimmen Sie den absoluten und relativen Fehlerberreich
> des Näherungspolynoms [mm]T_{5}(x)[/mm] der Funktion
> [mm]f(x)=x^{3}*ln(x)[/mm] für x=2 um den Entwicklungspunkt
> [mm]x_{0}=1.[/mm]
>  Hallo,
>  
> was ist mit absolutem und relativem Fehlerbereich gemeint?
> Bin ich schon auf dem richtigen Weg, wenn ich das
> Taylorpolynom [mm]T_{5}(x)[/mm] inklusive dem Restglied [mm]R_{n}(x)[/mm]
> aufgestellt habe?
>  
> [mm]T_{5}(x)=\bruch{1}{1!}(x-1)^{1}+\bruch{5}{2!}(x-1)^{2}+\bruch{11}{3!}(x-1)^{3}+\bruch{6}{4!}(x-1)^{4}-\bruch{6}{5!}(x-1)^{5}[/mm]
>  
> [mm]R_{n}(x)=|\bruch{f^{(6)}(\xi)}{6!}(x-1)^{6}|=|\bruch{\bruch{12}{\xi^{3}}}{6!}(x-1)^{6}|=|\bruch{12}{\xi^{3}*6!}(x-1)^{6}|=|\bruch{12}{\xi^{3}*5!*6}(x-1)^{6}|=|\bruch{2}{\xi^{3}*5!}(x-1)^{6}|[/mm]
>  
>
> Ich muss doch jetzt irgendwo x=2 einsetzen und damit was
> anstellen, richtig? Aber wo...



Für x=2 ist [mm] |f(2)-T_5(2)|=|\bruch{2}{\xi^{3}*5!}| [/mm] und 1 [mm] \le \xi \le [/mm] 2

Hilft das ?

fred

>  
> Gruß, Andreas
>  
>  


Bezug
                
Bezug
Fehlerbereich Näherungspolynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:59 Mo 15.04.2013
Autor: Mathe-Andi


> Für x=2 ist [mm]|f(2)-T_5(2)|=|\bruch{2}{\xi^{3}*5!}|[/mm] und 1
> [mm]\le \xi \le[/mm] 2
>  
> Hilft das ?

Also, ich verstehe was dort steht. Für die Taylorsche Formel gilt ja [mm] f(x)=f_{n}(x)+R_{n}(x) [/mm] und das ist oben umgestellt nach [mm] f(x)-f_{n}(x)=R_{n}(x). [/mm] Und [mm] \xi [/mm] liegt zwischen x und [mm] x_{0}. [/mm]

Ich bin mir nur nicht sicher was ich jetzt wirklich machen soll. Soll ich die Subtraktion links vom Gleichheitszeichen durchführen? Das Ergebnis ist dann mein relativer Fehler?


Gruß, Andreas


Bezug
                        
Bezug
Fehlerbereich Näherungspolynom: Antwort
Status: (Antwort) fertig Status 
Datum: 07:18 Di 16.04.2013
Autor: fred97


> > Für x=2 ist [mm]|f(2)-T_5(2)|=|\bruch{2}{\xi^{3}*5!}|[/mm] und 1
> > [mm]\le \xi \le[/mm] 2
>  >  
> > Hilft das ?
>  
> Also, ich verstehe was dort steht. Für die Taylorsche
> Formel gilt ja [mm]f(x)=f_{n}(x)+R_{n}(x)[/mm] und das ist oben
> umgestellt nach [mm]f(x)-f_{n}(x)=R_{n}(x).[/mm] Und [mm]\xi[/mm] liegt
> zwischen x und [mm]x_{0}.[/mm]
>  
> Ich bin mir nur nicht sicher was ich jetzt wirklich machen
> soll. Soll ich die Subtraktion links vom Gleichheitszeichen
> durchführen? Das Ergebnis ist dann mein relativer Fehler?
>  
>
> Gruß, Andreas
>  



Wegen 1 $ [mm] \le \xi \le [/mm] $ 2 ist

   [mm] $\bruch{1}{4*5!} \le |f(2)-T_5(2)| \le \bruch{2}{5!}$ [/mm]


Wenn Du statt f(2) die Näherung [mm] T_5(2) [/mm] nimmst, so handelst Du Dir einen Fehler ein. Dieser Fehller ist mindesten [mm] \bruch{1}{4*5!} [/mm] und höchstens [mm] \bruch{2}{5!}. [/mm]

FRED



Bezug
                                
Bezug
Fehlerbereich Näherungspolynom: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:32 Di 16.04.2013
Autor: Mathe-Andi

Ok, das wäre dann der absolute Fehler:

[mm] \bruch{1}{480} \le R_{5}(2) \le \bruch{1}{60} [/mm]

Den relativen Fehler berrechnet man, indem man [mm] T_{5}(2)\approx5,53 [/mm] ausrechnet und dann rechnet:

[mm] \bruch{\bruch{1}{480}}{5,53}*100\approx0,04% [/mm]

[mm] \bruch{\bruch{1}{60}}{5,53}*100\approx0,30% [/mm]

Stimmt das so?


Gruß, Andreas

Bezug
                                        
Bezug
Fehlerbereich Näherungspolynom: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:10 Mi 17.04.2013
Autor: Mathe-Andi

Ergebnisse oben stimmen. Aufgabe wurde verglichen.

Gruß, Andreas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de