www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "HochschulPhysik" - Fehlerfortpflanzung Winkelf.
Fehlerfortpflanzung Winkelf. < HochschulPhysik < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fehlerfortpflanzung Winkelf.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:37 So 02.01.2011
Autor: flare

Schönen guten Tag.
Wäre jemand so lieb, und könnte meine Rechnung kurz auf Fehler untersuchen?
Es wurde mittels Prismenspektrometer der Brechungsindex bestimmt.
Zur Winkelmessung gab es eine große kreisförmige Skala in 1/2 Grad und einen Nonius mit je 30 Gradminuten, wobei ein Skalenteil dort 1 Minute betrug.
Da keinerlei Informationen zur Messunsicherheit vorlagen, wurde auf eine Minute abgeschätzt, ist dies zweckmäßig?

Also ug=1/60°

Nun möchte ich die Unsicherheit der Funktion [mm] \delta_{min}=\bruch{\gamma_{1}-\gamma_{2}}{2} [/mm] bestimmen.
In Grad ergibt dies dann für die Unsicherheit [mm] {\delta_{min}}=\wurzel{(\bruch{1}{2}*ug)^2+(\bruch{1}{2}*ug)^2}=0,0118° [/mm]
Der Brechungsindex berechnet sich nun mit der Formel [mm] \bruch{Sin(0.5(\delta_{min}+\phi)}{Sin(0.5*\phi)}. [/mm]
[mm] \phi [/mm] war in unserem Fall 60°. Der Nenner wird somit zu [mm] \bruch{1}{2}. [/mm]
Die Ableitung des Zählerterms ist dann [mm] Cos(0.5(\delta_{min}+\phi). [/mm]
Nun wurde mir gesagt, dass man bei Winkelfunktionen die Unsicherheit in Bogenmaß berechnet also:
[mm] \wurzel{Cos(\bruch{Pi}{2*180°}(\delta_{min}+60°))^2*(u_{\delta_{min}}*Pi/180)^2} [/mm]
Ich erhalte dann letztlich 0.000116245 bei [mm] \delta_{min}=51,175° [/mm]
Im Skript ist ein weitaus größerer Wert angegeben. Habe ich die Unsicherheit der Winkelmessung mit einer Winkelminute zu gering angenommen? Oder liegt es daran, dass die 60° fehlerlos angenommen wurden?
Bitte um Klärung :)
Vielen Dank

        
Bezug
Fehlerfortpflanzung Winkelf.: Antwort
Status: (Antwort) fertig Status 
Datum: 18:53 So 02.01.2011
Autor: Event_Horizon

Hallo!

Deine ersten Formeln sind ziemlich widersprüchlich, daher gehe ich darauf nicht näher ein.

Das Problem ist, daß bei der Fehlerrechnung ja abgeleitet wird. Du hast gelernt, daß sin'=cos gilt. Wenn du dir eine sin-Funktion im Gradmaß zeichnest, siehst du, daß ihre Steigung bei x=0 mitnichten cos(0)=1 ist! Das gilt nur im Bogenmaß!
Deshalb gilt: Das Gradmaß ist gut, wenn du einfache Geometrie betreibst, oder z.B. um ein Endergebnis anzugeben, weil das Gradmaß dem Menschen besser liegt, als das Bogenmaß.
Sobald du aber anfängst, z.B. abzuleiten oder zu integrieren, mußt du das Bogenmaß nehmen.

Dein Fehler ist nun, daß du genau das zwar beachtet hast, die Unsicherheit aber nun auch im Bogenmaß vorliegt, während dein Messwert in Grad vorliegt. Du solltest die Unsicherheit also auch wieder ins Gradmaß konvertieren.


Bezug
                
Bezug
Fehlerfortpflanzung Winkelf.: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 19:01 So 02.01.2011
Autor: flare

Warum sollten meine Formeln widersprüchlich sein?
Ok ich hab einmal den Doppelindex vergessen, es muss
[mm] {u_{\delta_{min}}}=\wurzel{(\bruch{1}{2}*ug)^2+(\bruch{1}{2}*ug)^2}=0,0118° [/mm]
Die [mm] \gamma [/mm] sind meine beiden Winkelmessungen, die jeweils ug als Unsicherheit haben.
Der Brechungsindex hat dann die Formel
[mm] n=\bruch{Sin(0.5(\delta_{min}+\phi)}{Sin(0.5*\phi)} [/mm]
ist also einheitenlos, ebenso wie seine Unsicherheit:
[mm] u_{n}=\wurzel{Cos(\bruch{Pi}{2*180°}(\delta_{min}+60°))^2*(u_{\delta_{min}}*Pi/180)^2} [/mm]
Warum muss ich dann hier noch einmal was umrechnen, ich erhalte ja für den Brechungsindex unabhängig ob ich in Bogenmaß oder Grad rechne denselben Wert
Wichtig wäre für mich auch die Frage ob die Abschätzung der Unsicherheit von einem Skalenteil zu einer Gradminute vernünftig ist?

Bezug
                        
Bezug
Fehlerfortpflanzung Winkelf.: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Di 04.01.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de