www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Numerik" - Fehlerrechnung
Fehlerrechnung < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fehlerrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:15 So 13.11.2005
Autor: Molch

Hallo!

Ich plage mich jetzt seit geraumer Zeit mit zwei Aufgaben herum, zu denen ich einfach nicht die passende Lösung finde. Deswegen wäre ich für jegliche Hilfe sehr dankbar!

1.

"Es liegen  zylindrische Dosen mit unterschiedlichen Bodendurchmessern 2r und unterschiedlichen Höhen h=cr vor. Bei allen Dosen wird 2r mit übereinstimmendem relativem Fehler [mm] \aplha [/mm] gemessen. Wie wirken sich die Größe der Meßwerte 2r und der konstante Faktor c im relativen Fehler des Volumens der jeweiligen Dose aus?"

Mein Lösungsansatz war wie folgt:

[mm] V(r)=pi*r^{2}*h=pi*c*r^{3} [/mm]

[mm] V'(r)=3pi*c*r^{2} [/mm]

Nun gilt ja für den relativen Fehler:

{(V(r)-V(y))/V(r)} [mm] \approx [/mm] {(V'(y)*(r-y))/V(y)}

.., wobei y hierbei der gemessene Wert sei.
Da sich [mm] \alpha [/mm] auf 2r bezieht muss ich ja für (r-y) [mm] (\alpha/2) [/mm] einsetzen.
Was muss ich jedoch für y einsetzen? Etwa den gemessenen Durchmesser d=2r umgestellt nach r? Wenn ich so vorgehe erhalte ich eine andere Lösung als gegeben (richtige Lösung: 3 [mm] \alpha). [/mm]

2.

"Durch Wärmeeinwirkung verlängert sich die Länge [mm] L=2b(1+(2/3)b^{2}f^{-2}) [/mm] eines Telegrafendrahtes (2b: Abstand zwischen den Aufhängepunkten; f: Pfeilhöhe der Durchhängung) um dL. Gesucht ist die Vergrößerung von f."

Mein Ansatz:

[mm] L(f)=2b(1+(2/3)b^{2}f^{-2}) [/mm]

L'(f)=(8f)/(3b)

Muss ich dann dL sozusagen als "Messungenauigkeit" interpretieren und die Umkehrfunktion durch Umstellen nach f bilden?

Ich hoffe die Fragen sind nicht zu missverständlich formuliert.

Mit freundlichen Grüßen,

Molch

        
Bezug
Fehlerrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:31 Mi 16.11.2005
Autor: mathemaduenn

Hallo Molch,

> 1.
>  
> "Es liegen  zylindrische Dosen mit unterschiedlichen
> Bodendurchmessern 2r und unterschiedlichen Höhen h=cr vor.
> Bei allen Dosen wird 2r mit übereinstimmendem relativem
> Fehler [mm]\aplha[/mm] gemessen. Wie wirken sich die Größe der
> Meßwerte 2r und der konstante Faktor c im relativen Fehler
> des Volumens der jeweiligen Dose aus?"
>  
> Mein Lösungsansatz war wie folgt:
>  
> [mm]V(r)=pi*r^{2}*h=pi*c*r^{3}[/mm]
>  
> [mm]V'(r)=3pi*c*r^{2}[/mm]
>  
> Nun gilt ja für den relativen Fehler:
>  
> {(V(r)-V(y))/V(r)} [mm]\approx[/mm] {(V'(y)*(r-y))/V(y)}

Ich würde die Formeln gleich bezgl. d=2r aufstellen. Wenn der Fehler schon so gegeben ist.
[mm] V(d)=\bruch{\pi*c*r^{3}}{8} [/mm]
Außerdem weiß ich nicht ob Du beachtet hast das in (V'(y)*(r-y))/V(y) der relative Fehler von r nicht vorkommt Du müßtest noch mit r(bzw. das gemessene y erweitern. [mm]\bruch{V(d)-V(y)}{V(d)} \approx \bruch{V'(y)*y}{V(y)}[red]\bruch{d-y}{d}[/red][/mm]

> 2.
>  
> "Durch Wärmeeinwirkung verlängert sich die Länge
> [mm]L=2b(1+(2/3)b^{2}f^{-2})[/mm] eines Telegrafendrahtes (2b:
> Abstand zwischen den Aufhängepunkten; f: Pfeilhöhe der
> Durchhängung) um dL. Gesucht ist die Vergrößerung von f."
>  
> Mein Ansatz:
>  
> [mm]L(f)=2b(1+(2/3)b^{2}f^{-2})[/mm]
>  
> L'(f)=(8f)/(3b)

Hier gilt ganz ähnlich zur oberen
[mm]L(f_2)-L(f_1)\approx L'(f_1)(f_2-f_1)[/mm]
also
[mm]dL \approx L'(f_1) df[/mm]

viele Grüße
mathemaduenn

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de