www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Fellersche Bedingung
Fellersche Bedingung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fellersche Bedingung: Verständnis
Status: (Frage) beantwortet Status 
Datum: 18:59 Sa 06.10.2012
Autor: dennis2

Aufgabe
Hallo, kann mir jemand erklären, was die sog. []Feller'sche Bedingung (s. bei der Überschrift "Umkehrung") inhaltlich aussagt?



Ich werde nicht so richtig schlau daraus, was diese Bedingung inhaltlich bedeutet; wie sie definiert ist, weiß ich und auch, daß man sie im Kontext einer Verallgemeinerung des Zentralen Grenzwertsatzes benötigt.

        
Bezug
Fellersche Bedingung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:19 Sa 06.10.2012
Autor: Gonozal_IX

Hiho,

überleg dir doch mal, was passiert, wenn diese Bedingung nicht erfüllt ist.
Was bedeutet das dann zwingerweise für die Varianzen?
Dabei gibt es zwei Fälle zu beachten, wobei sich aber beide nachher in einen umgangssprachlichen Satz zusammenfassen lassen.
Das soll eben gerade nicht passieren ;-)

MFG,
Gono.

Bezug
                
Bezug
Fellersche Bedingung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:28 Sa 06.10.2012
Autor: dennis2

Also in Worten bedeutet die Bedingung m.E. Folgendes:

Man dividiert die größte Varianz durch die Summe der Varianzen (wenn man den Bruch quadriert). Dann:

Asymptotisch spielt der größte Summand keine Rolle.

---------------------------------

Wenn diese Bedingung jetzt nicht gelten würde, würde die Summe der Varianzen bestimmt sein durch den größten Summanden, also die größte Varianz.


Hmm...

Bezug
                        
Bezug
Fellersche Bedingung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:40 Sa 06.10.2012
Autor: Gonozal_IX

Hiho,

> Wenn diese Bedingung jetzt nicht gelten würde, würde die
> Summe der Varianzen bestimmt sein durch den größten
> Summanden, also die größte Varianz.

jein.
Es gibt zwei wesentliche Möglichkeiten, wie das auftreten kann.

1.) Die Summe aller Varianzen ist endlich (d.h. die Folge der Varianzen wird ausreichend schnell klein).

2.) Ab und an taucht eine Varianz auf, die so groß ist, dass sie alles vorhergehende dominiert (d.h. in etwa so groß ist, wie die Summe der vorherigen Varianzen).

Mach dir mal klar, warum in beiden Fällen der Grenzwert nicht null wird (und das dass auch die einzigen Fälle sind).

Man könnte jetzt zwar vermuten, dass das heißt, die Varianzen müssten in einem bestimmten Intervall nach oben und unten liegen, dem ist aber nicht so, wie man schnell an

[mm] $\left(\sigma_j\right)^2 [/mm] = [mm] \bruch{1}{j}$ [/mm]

erkennt.
Man sieht aber, dass auf keinen Fall Fall 2.) auftritt, und für Fall 1.) fallen die Varianzen nicht schnell genug ab :-)

Demgegenüber steht die Folge

[mm] $\left(\sigma_j\right)^2 [/mm] = [mm] \bruch{1}{j^2}$ [/mm]

die das Kriterium nicht erfüllt, aber im gleichen Intervall liegt, wie die vorherige.

Gruß,
Gono.

Bezug
                                
Bezug
Fellersche Bedingung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:47 Sa 06.10.2012
Autor: dennis2

Das heißt die Bedingung verhindert die Situationen 1.) und 2.)

Aber wieso ist das wichtig?

Bzw: Wie folgt aus dieser Bedingung ein zentraler Grenzwertsatz?



Bezug
                                        
Bezug
Fellersche Bedingung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:58 Sa 06.10.2012
Autor: Gonozal_IX

Hiho,

> Bzw: Wie folgt aus dieser Bedingung ein zentraler Grenzwertsatz?

tut es doch gar nicht!

Da steht:
Aus [mm] "(X_i) [/mm] erfüllt die Lindeberg-Bedingung"  folgt [mm] "(X_i) [/mm] genügt dem zentralen Grenzwertsatz".

Die Umkehrung:

Aus [mm] "(X_i) [/mm] genügt dem zentralen Grenzwertsatz" folgt [mm] "(X_i) [/mm] erfüllt die Lindeberg-Bedingung" gilt NICHT dafür benötigt man ZUSÄTZLICH die  Fellersche Bedingung.

D.h:

Aus [mm] "(X_i) [/mm] genügt dem zentralen Grenzwertsatz UND erfüllt die Fellersche Bedingung" folgt [mm] "(X_i) [/mm] erfüllt die Lindeberg-Bedingung".

D.h. dass [mm] (X_i) [/mm] dem zentralen Grenzwertsatz genügt wird vorausgesetzt und folgt nicht direkt aus der von dir betrachteten Bedingung.

MFG,
Gono.

Bezug
                                                
Bezug
Fellersche Bedingung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:02 Sa 06.10.2012
Autor: dennis2

Ich verstehe aber nicht, wieso man den zentralen Grenzwertsatz voraussetzen kann, denn die [mm] X_i [/mm] sind ja als unabhängig (aber nicht als identisch verteilt) vorausgesetzt, während man für den dort verlinkten zentralen Grenzwertsatz auch braucht, dass die [mm] X_i [/mm] identisch verteilt sind.


Mir wird auch nicht klar, wieso diese Fellersche Bedingung gelten muss, warum ist es schlimm, wenn sie nicht gilt...


Sehr verzwickt, wie ich finde.





Bezug
                                                        
Bezug
Fellersche Bedingung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:35 Sa 06.10.2012
Autor: Gonozal_IX

Hiho,

> Ich verstehe aber nicht, wieso man den zentralen  Grenzwertsatz voraussetzen kann, denn die [mm]X_i[/mm] sind ja als  unabhängig (aber nicht als identisch verteilt) vorausgesetzt, während man für den dort verlinkten zentralen Grenzwertsatz auch braucht, dass die [mm]X_i[/mm] identisch verteilt sind.

Warum kannst du sie als unabhängig voraussetzen?
Einfach weil es eben vorausgesetzt wird, d.h. es gilt eben nur für solche [mm] $X_i$, [/mm] die die Voraussetzungen erfüllen.
Da wird ja nichts aus der Unabhängigkeit hergeleitet, sondern, ich betone es nochmal, vorausgesetzt.
Ist die der Unterschied nicht klar?
Wie hast du denn Sätze bisher bewiesen? Ganz ohne Voraussetzungen? Das wage ich mal zu bezweifeln.....

> Mir wird auch nicht klar, wieso diese Fellersche Bedingung
> gelten muss, warum ist es schlimm, wenn sie nicht gilt...

Weil es dann eben (mindestens) eine Folge von [mm] X_i [/mm] gibt, die dem zentralen Grenzwertsatz genügt, aber nicht der Lindeberg-Bedingung.

Ein Beispiel hatte ich dir ja bereits gegeben mit [mm] (X_i) [/mm] unabhängig, [mm] $\sigma_i^2 [/mm]  = [mm] \bruch{1}{i^2}$ [/mm]

> Sehr verzwickt, wie ich finde.

Nein, du darfst nur Begrifflichkeiten nicht durcheinander werfen.
Und gerade bei solchen Thematiken reicht es eben nicht mehr aus, sich bei Wikipedia zu belesen, sondern da muss man sich ein paar Fachbücher zur Hand nehmen und sich dort belesen.
Dort wirst du auch Beispiele zu deinen Fragen finden, denn gerade zum Thema des zentralen Grenzwertsatzes gibt es viel schwächere Bedingungen als "iid"

MFG,
Gono.

Bezug
                                                                
Bezug
Fellersche Bedingung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:39 Sa 06.10.2012
Autor: dennis2

Also man setzt voraus, dass die Xi den zentralen GWS erfüllen, also insbesondere unabhängig und identisch verteilt sind?

Und dann kann man versuchen die Feller bedingung nachzuweisen, für die schon reicht, dass die [mm] X_i [/mm] unabhängig verteilt sind?

Bezug
                                                                        
Bezug
Fellersche Bedingung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:44 Sa 06.10.2012
Autor: Gonozal_IX

Hiho,

> Also man setzt voraus, dass die Xi den zentralen GWS erfüllen

Ja.

> also insbesondere unabhängig und identisch verteilt sind?

Nein, wie kommst du darauf?
Ich hab doch eben geschrieben, dass der ZGW für weit mehr als nur i.i.d Zufallsvariablen gilt!
Du solltest dich dringend nochmal damit auseinandersetzen, was Implikationen (Folgerungen) sind, und dass aus ihnen nicht auch die Umkehrung eines Satze folgt.

Heißt: Wenn aus A folgt B gilt, folgt aus B nicht umgekehrt auch zwangsweise A!

> Und dann kann man versuchen die Feller bedingung
> nachzuweisen, für die schon reicht, dass die [mm]X_i[/mm] unabhängig verteilt sind?

Das kannst du versuchen, sobald du nachgewiesen hast, dass deine Zufallsvariablen unabhängig sind, ja.

MFG,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de