www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Physik" - Fermat'sches Prinzip
Fermat'sches Prinzip < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fermat'sches Prinzip: Ansatz?
Status: (Frage) beantwortet Status 
Datum: 12:31 Mo 16.06.2008
Autor: HaPe

Aufgabe
Nach dem Fermatschen Prinzip gelangt ein Lichtstrahl auf demjenigen Weg vom Punkt A zum Punkt B, auf dem er die kürzeste Zeit benötigt. Bestimmen Sie die Lichtbahn zwischen $A = [mm] (a_{x}, a_{y}, [/mm] 0)$ und $B = [mm] (b_{x}, b_{y}, [/mm] 0)$ in einem Medium, in dem die Lichtgeschwindigkeit gemäß $c = [mm] \lambda [/mm] x$ linear mit $x$ anwächst.

Hallo miteinander
Das hier ist eine Aufgabe aus der Theoretischen Physik, ein zähes Fach muss ich zugeben :/
Wie setze ich hier an? Der kürzeste Weg ist hier ja wohl nicht der richtige Ansatz, oder? Könnte mir da einer einen Tipp geben? Kann mit dem, was in Büchern und im Internet steht, leider nichts anfangen.

Danke schon mal im voraus
HaPe

        
Bezug
Fermat'sches Prinzip: Antwort
Status: (Antwort) fertig Status 
Datum: 20:12 Mo 16.06.2008
Autor: rainerS

Hallo!

> Nach dem Fermatschen Prinzip gelangt ein Lichtstrahl auf
> demjenigen Weg vom Punkt A zum Punkt B, auf dem er die
> kürzeste Zeit benötigt. Bestimmen Sie die Lichtbahn
> zwischen [mm]A = (a_{x}, a_{y}, 0)[/mm] und [mm]B = (b_{x}, b_{y}, 0)[/mm] in
> einem Medium, in dem die Lichtgeschwindigkeit gemäß [mm]c = \lambda x[/mm]
> linear mit [mm]x[/mm] anwächst.
>  Hallo miteinander
>  Das hier ist eine Aufgabe aus der Theoretischen Physik,
> ein zähes Fach muss ich zugeben :/
>  Wie setze ich hier an? Der kürzeste Weg ist hier ja wohl
> nicht der richtige Ansatz, oder? Könnte mir da einer einen
> Tipp geben? Kann mit dem, was in Büchern und im Internet
> steht, leider nichts anfangen.

Du musst den Weg finden, der am schnellsten (in der kürzesten Zeit) durchlaufen wird.

Nimm zunächst eine beliebige Form des Wegs [mm] $\vektor{x(t)\\y(t)\\z(t)}$ [/mm] an. Dann stellst du eine allgemeine Formel für die Zeit auf, die das Licht von Punkt A nach Punkt B benötigt. Schließlich berechnest du das Minimum.

Viele Grüße
   Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de