www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Finanzmathematik" - Finanzmathe
Finanzmathe < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Finanzmathe: Korrektur
Status: (Frage) beantwortet Status 
Datum: 13:38 So 13.05.2007
Autor: seny

Aufgabe
2. a) Eine Mutter entschließt sich bei der Geburt ihres Kindes, bis einschließlich zu dessen 18. Geburtstag mit jährlich nachschüssigen Beträgen 10 000 € anzusparen. Wie hoch muss der jährliche Betrag sein, wenn mit einem Zinssatz von 4 % p.a. gerechnet wird?

b) Jemand möchte 60 000 € ansparen. Dazu zahlt er am Beginn jedes Jahres 1500 € auf ein (am Anfang leeres) Konto ein. Der Zinssatz beträgt 5 % p.a. Nach wie vielen Jahren hat er sein Ziel erreicht?

Hallo!

Kann mir jemand sagen ob meine Ergebnisse zu dieser Aufgabe richtig sind!

a) [mm] \bruch{10000}{\bruch{1-1,04^{18}}{1-1,04}}= [/mm] 389,93€

b) Endwert (vorschüssige Rente) = [mm] r\*q\*\bruch{1-q^n}{1-q} [/mm]
    [mm] 60000=1500\*1,05\*\bruch{1-1,05^n}{1-1,05} [/mm]
    n=21,85, also Rund 22 Jahre

Ich habe diese Frage in kein anderes Forum gestellt




        
Bezug
Finanzmathe: Antwort
Status: (Antwort) fertig Status 
Datum: 14:58 So 13.05.2007
Autor: Josef

Hallo seny,

> 2. a) Eine Mutter entschließt sich bei der Geburt ihres
> Kindes, bis einschließlich zu dessen 18. Geburtstag mit
> jährlich nachschüssigen Beträgen 10 000 € anzusparen. Wie
> hoch muss der jährliche Betrag sein, wenn mit einem
> Zinssatz von 4 % p.a. gerechnet wird?
>  
> b) Jemand möchte 60 000 € ansparen. Dazu zahlt er am Beginn
> jedes Jahres 1500 € auf ein (am Anfang leeres) Konto ein.
> Der Zinssatz beträgt 5 % p.a. Nach wie vielen Jahren hat er
> sein Ziel erreicht?
>  Hallo!
>  
> Kann mir jemand sagen ob meine Ergebnisse zu dieser Aufgabe
> richtig sind!
>  
> a) [mm]\bruch{10000}{\bruch{1-1,04^{18}}{1-1,04}}=[/mm] 389,93€


[ok]


[mm]R*\bruch{1,04^{18}-1}{0,04} = 10.000[/mm]

R = 389,93




>  
> b) Endwert (vorschüssige Rente) = [mm]r\*q\*\bruch{1-q^n}{1-q}[/mm]
>      [mm]60000=1500\*1,05\*\bruch{1-1,05^n}{1-1,05}[/mm]
>      n=21,85, also Rund 22 Jahre
>  


[ok]


Super!


Viele Grüße
Josef

Bezug
                
Bezug
Finanzmathe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:04 So 13.05.2007
Autor: seny

Hallo Josef!

Danke für die Korrektur. Freut mich das alles richtig ist!

Liebe Grüße

Jenny

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de