www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Steckbriefaufgaben" - Fkt.-gleichung ist gesucht
Fkt.-gleichung ist gesucht < Steckbriefaufgaben < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fkt.-gleichung ist gesucht: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:55 So 25.11.2007
Autor: sunbell

Aufgabe
Der Graph von f schneidet die x-Achse bei x=0 und x=4. Im koordinatenursprung ist die Gerade t(x)=x Tangente an den Graphen von f.
Gesucht ist die qudratische Fkt-gleichung.

also ich hab mir schon überlegt, dass das bild der parabel nach unten geöffnet sein muss, aber wie man jetzt rechnerisch an die aufgabe rangeht..kp
wäre toll, wenn mir jemand nen tipp geben kann

liebe grüße

        
Bezug
Fkt.-gleichung ist gesucht: Antwort
Status: (Antwort) fertig Status 
Datum: 14:12 So 25.11.2007
Autor: Analytiker

Hi sunbell,

> also ich hab mir schon überlegt, dass das bild der parabel
> nach unten geöffnet sein muss, aber wie man jetzt
> rechnerisch an die aufgabe rangeht..

Wir wissen, das laut Aufgabe eine Funktion 2.Grades (quadratische Funktion) gesucht wird. Dazu müssen wir zu allererst einmal die allgemeingültige Funktionsvorschrift für die Funktionen 2.Grades aufstellen. Diese sähe wie folgt aus:

f(x) = [mm] ax^{2} [/mm] + bx + c

und dessen Ableitung wäre:

f'(x) = 2ax + b

Nun haben wir laut Aufgabenstellung ein paar Nebenbedingungen gegeben, die den Verlauf der gesuchten Funktion näher beschreiben. Diese Nebenbedingungen müssen wir vermathematisieren. Das sähe dann so aus:

> Der Graph von f schneidet die x-Achse bei x=0 und x=4

Hierbei handelt es sich um die beiden Nullstellen der Funktion, die wir auch so ausdrücken können:

-> f(0) = 0
-> f(4) = 0

> Im Koordinatenursprung ist die Gerade t(x)=x Tangente an den Graphen von f.

Hier schauen wir uns zuerst die Gerade t(x) = x an. Diese hat eine Steigung von 1. Sie geht durch den Koordinatenursprung (0/0) und tangiert in diesem Punkt unseren Graphen. Das bedeutet, im Punkt x = 0 hat unsere gesuchte Funktion eine Steigung von 1. Mathematisch wäre das:

-> f'(0) = 1

Nun haben wir uns drei Nebenbedingungen erarbeitet. Was du nun noch machen musst ist, das du dir ein Gleichungssystem aufstellst, und die oberen beiden Nebenbedingungen in die allgemeine Form und die letzte Nebenbedingung in die Ableitung der allgemeinen Form einsetzt. Nun kannst du in diesem Gleichungssystem (durch ineinander einsetzen der drei neu gewonnenen Terme) die Werte für a, b und c herausfinden und setzt diese wiederrum in die allgemeine Form ein. Nun hast du deine gesuchte Funktion ermittelt. Diesen Aufgabentyp nennt man "Steckbriefaufgabe". Deswege werde ich diese Diskussion auch mal in das passende Forum stecken. Ich hoffe ich konnte dir ein wenig helfen?

Liebe Grüße
Analytiker
[lehrer]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de