www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Numerik" - Fläche durch Integral
Fläche durch Integral < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fläche durch Integral: Fläche durch Integral f=1
Status: (Frage) beantwortet Status 
Datum: 21:43 Mo 16.12.2013
Autor: NoobMathe

Hallo,

ich könnte nicht verstehen wieso wenn wir Flächeintegral über verschieden grenzen Inttegrieren(z.b. Tripple, Double Integrale), dann muss man anstelle von f eins schreiben, also wieso integriert man eins


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Fläche durch Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 21:52 Mo 16.12.2013
Autor: reverend

Hallo MatheNoob, [willkommenmr]

> ich könnte nicht verstehen wieso wenn wir Flächeintegral
> über verschieden grenzen Inttegrieren(z.b. Tripple, Double
> Integrale), dann muss man anstelle von f eins schreiben,
> also wieso integriert man eins

Das ist nicht allgemein so! Manchmal aber ist es eine geschickte Möglichkeit, um ein Integral zu berechnen.

Allgemein gilt natürlich [mm] \int_{a}^{b}{1\;\mathrm{dx}}=\left[x\right]_{a}^{b} [/mm]

Mit anderen Worten: wenn "Eins integriert" wird, dann ist eben $f(x)=1$ und es wird ganz gewöhnlich [mm] \int{f(x)\;\mathrm{dx}} [/mm] gebildet.

Vielleicht hast Du ja gerade ein Beispiel, an dem man es besser erklären kann?

Grüße
reverend

Bezug
        
Bezug
Fläche durch Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 22:02 Mo 16.12.2013
Autor: Richie1401

Hallo,

nun, man integriert nicht einfach so über 1, sondern vielmehr tatsächlich über eine Funktion f(x). Und diese ist eben f(x)=1.

Woran liegt das? Normalerweise integriert man über Vektorfelder, oder sonstiges, was nicht homogen im räumlichen Sinne ist. Damit kann man z.B. notwendige Energien bestimmen, die man braucht, um ein Objekt von a nach b zu transportieren. Dabei stellt f(x) ein Kraftfeld dar.

Beim Flächeninhalt ist aber der zu intregierende Raum äußerst homogen. Die Fläche ist einfach glatt.

Naja, und ehrlich gesagt: Es klappt eben einfach. Dass man über 1 integriert ist (gott sei Dank) mit  den anderen Berechnungen stimmig... Was für ein Glück.

Bezug
                
Bezug
Fläche durch Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:20 Mo 16.12.2013
Autor: NoobMathe

Also, wenn man über eins integriert Z.B Volumen oder Flächen das heißt man integriert etwas homagenes, naja Zylinder, Kegel. Aber wenn man Dichte oder  
Vektorfeldbestimmen will, dann braucht man eine Funktion die Dichte beschreibt und die Grenzen. Aslo Eins steht hier für die Einheit 1 für Länge, 1x1 für Fläche, 1x1x1=1 für das Volumen.

Bezug
                        
Bezug
Fläche durch Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:22 Mo 16.12.2013
Autor: NoobMathe

Also über viele solche Einzen integriert man, bis man gewünchte Zahl erreicht

Bezug
        
Bezug
Fläche durch Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 22:40 Mo 16.12.2013
Autor: Al-Chwarizmi


> Hallo,
>  
> ich könnte nicht verstehen wieso wenn wir Flächeintegral
> über verschieden grenzen Inttegrieren(z.b. Tripple, Double
> Integrale), dann muss man anstelle von f eins schreiben,
> also wieso integriert man eins


Hallo,

falls ich das richtig verstanden habe, möchtest
du wissen, weshalb etwa der Flächeninhalt eines
ebenen Gebietes  G gegeben ist durch

    $\ F\ =\ [mm] \iint_{G}\,1\ [/mm] dx\ dy$

und das Volumen eines 3D-Bereiches B durch

    $\ V\ =\ [mm] \iiint_{B}\,1\ [/mm] dx\ dy\ dz$

Nun, das liegt schlicht und einfach daran, dass z.B.
der Flächeninhalt des (infinitesimalen) Flächen-
elements der Breite dx und der Höhe dy gleich dx*dy,
also gleich  1*dx*dy  ist.
(siehe []Rechtecksflächeninhalt)

Wenn man wollte, könnte man dies auch mit Hilfe
von Grenzwerten aufschreiben - aber der Kerninhalt
würde damit nicht klarer als so kristallklar, wie er
ohnehin schon ist.

LG ,   Al-Chw.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de