www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Fläche zwischen 2 funktionen
Fläche zwischen 2 funktionen < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fläche zwischen 2 funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:50 Do 01.06.2006
Autor: Gwin

Aufgabe
Man berechne die Fläche, die der Kreis: [mm] r=3*cos(\phi) [/mm] und die Kardioide: [mm] r=1+cos(\phi) [/mm] gemeinsam einschließt.

hallo zusammen...

gibt es für diese art aufgaben eine einfache möglichkeit die fläche zu berechnen wie z.b. bei kartesischen funktionen mit  [mm] \integral_{a}^{b}{f(x)_{1}-f(x)_{2} dx}? [/mm]
oder ist das bei diesen funktionen etwas aufwendiger und wenn ja könnte mir jemand kurz erklären wie man das macht?


mfg Gwin

        
Bezug
Fläche zwischen 2 funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:25 Fr 02.06.2006
Autor: Event_Horizon

Kannst du denn in Polarkoordinaten integrieren?

In kartesischen Koordinaten geht das erstmal so:

[mm] $A=\integral_{x_1}^{x_2}\integral_{y_1}^{y_2}dydx$ [/mm]


Die Fläche unter ner Kurve geht dann von [mm] $y_1=0$ [/mm] bis [mm] $y_2=f(x)$, [/mm] sodaß du nach der y-Integration das bekannte Resultat

[mm] $A=\integral_{x_1}^{x_2}f(x)dx$ [/mm]

hast.

In Polarkoordinaten gehts genauso, allerdings kommt hier noch ein zusätzliches r mit in das Integral rein:

[mm] $A=\integral_{\phi_1}^{\phi_2}\integral_{r_1}^{r_2}rdrd\phi$ [/mm]

Jetzt gehen die Grenzen von r normalerweise von 0 bis [mm] $r_2=f(\phi)$, [/mm] also so:

[mm] $A=\integral_{\phi_1}^{\phi_2}\integral_{0}^{f(\phi)}rdrd\phi=\bruch{1}{2}\integral_{\phi_1}^{\phi_2}f(\phi)^2d\phi$ [/mm]

Das ist das, was du suchst. Setze die beiden Funktionen ein, und integiere. Ziehe dann beide Ergebnisse voneinander ab, denn (f-g)² ist nicht f²-g², wie im kartesischen Fall!


Achso, die Integrationsgrenzen sind natürlich [mm] $0\le \phi \le 2\pi$ [/mm]


Wenn du wissen willst, woher das r kommt, frag, aber EIGENTLICH denke ich, daß du grade dieses Thema behandelst, oder?

Bezug
                
Bezug
Fläche zwischen 2 funktionen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 21:24 So 04.06.2006
Autor: Gwin

hi Event_Horizon...

vielen dank für deine antwort...

prinzipiell kann ich das integrieren von polarkoordinaten. nur scheitert es daran das ich nicht weiß wie man die flöche zwischen zwei kurven in dieser form berechnet...


habe die lösung anscheinend nicht so ganz verstanden...
habe mich mal an der lösung versucht, komme aber nicht auf das von unserem prof gegebenen ergebniss...
auch durch rumspielen mit maple bin ich nicht auf das ergebniss gekommen...

habe folgendes in maple eingegeben...

[mm] \bruch{1}{2}*( \integral_{0}^{2 \pi}{(3*cos(\Phi))^{2} d\Phi})-(\integral_{0}^{2 \pi}{(1+cos(\Phi))^{2} d\Phi}) [/mm]

als ergebniss bekomme ich [mm] 3\Pi, [/mm] als lösung haben wir aber  [mm] \bruch{5}{4}\Pi [/mm] bekommen...
könntest du mir eventuell nochmal erklären wo ich mein fehler mache?

mfg Gwin


Bezug
                        
Bezug
Fläche zwischen 2 funktionen: späte Antwort
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:03 Di 06.06.2006
Autor: Event_Horizon

Hallo!

Sorry, ich habe den Thread aus den Augen verloren.

Der Fehler ist wohl ein einfacher Anfängerfehler, und ich habe im Eifer des Gefechts auch nciht dran gedacht.

Hast du die beiden Funktionen mal geplottet? Die schneiden sich bei 1/3 pi und -1/3pi. Die Karotinoide zerzeilt den Kreis in einen mondförmigen Teil und den Rest. Dieser Rest ist gefragt

Die Integration verläuft wie oben, jedoch mußt du folgendes bilden:

[mm] $\integral_{-1/3\pi}^{+1/3\pi} +2*\integral_{1/3\pi}^{1/2\pi} [/mm] <Kreis>$

Wenn du die die beiden Funktionen mal plotten läßt, sollte das klar werden.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de