Flächenberechnen < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:10 Mo 11.12.2006 | Autor: | Beliar |
Aufgabe | Der Graph der Fkt. f mit [mm] f(x)=x^3+x^2 [/mm] schliesst mit der Tangente an Stelle 2 und der 1.Achse eine Fläche ein. Berechne den Flächeninhalt. |
Hallo, ich wollte nur wissen ob es andere Lösungswege als diesen gibt, vielleicht einfachere, leichtere. Wäre toll wenn sie mir jemand mitteilen kann.
Habe zuerst die Ableitung gemacht,
[mm] f'(x)=3x^2+2x
[/mm]
f''(x)=6x+2
dann mit y=mx+b die Tangentengleichung ermittelt,
m=16; x=2; die Gleichung lautet dann g(x)=16x-20
jetzt zuerst das gesamte Integral berechnet=6 2/3 FE
dann Tangentenfläche sind 4 1/2
zusammen dann 2 1/6.
Geht das nur wie hier Schritt für Schritt, oder kann man da eine Komplett Geschichte raus machen, und wenn ja wie?
Gruß Beliar
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:10 Mo 11.12.2006 | Autor: | M.Rex |
Hallo
leider geht es nicht einfacher, sorry.
Gruss aus BI nach BI
Marius
|
|
|
|