www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Flächenberechnung
Flächenberechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Flächenberechnung: Benötige Hilfe bei einer Aufg.
Status: (Frage) beantwortet Status 
Datum: 19:55 Do 19.01.2006
Autor: Tobi252

Aufgabe
"Für welchen Wert von c schließt der Graph der Funktion f mit der Parabel zu g(x) =
x² eine Fläche der Maßzahl A(F) ein?"
a) f(x)= c ; A(F)=36

Hallo, ich benötige mal ein wenig Hilfe bei einer Augabe. Leider kann ich keinen Anfang machen, weil ich absolut keine Ahnung habe wie beginnen soll. Insgesammt sind es zwei Aufgaben aber ich werde nur eine posten damit ich bei der zweiten Aufgabe dann mein hoffentlich neuerlentes Wissen selbst anwenden kann.
Hinweis: Bitte die Zwischenschritte erklären *
-Ich bedanke mich schon mal im voraus für die (möglichen) Antworten.

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt: http://www.mathe-profis.de/forum/thread.php?threadid=1510&sid=



        
Bezug
Flächenberechnung: allgemeiner Ansatz (editiert!)
Status: (Antwort) fertig Status 
Datum: 20:28 Do 19.01.2006
Autor: Karl_Pech

Hallo Tobi252,


[willkommenmr]


> "Für welchen Wert von c schließt der Graph der Funktion f
> mit der Parabel zu g(x) =
> x² eine Fläche der Maßzahl A(F) ein?"


Zuerst bestimmen wir die Stellen, wo sich [mm]f[/mm] und [mm]g[/mm] schneiden:


[mm]f(x) = g(x) \gdw c = x^2 \Rightarrow \left(x_0 = -\sqrt c \vee x_1 = \sqrt c\right)[/mm]


Da [mm]g[/mm] [mm]y\texttt{--Achsen-symmetrisch}[/mm] ist, reicht es


[mm]2\int_0^{\sqrt c}{x^2 \mathrm{d}x}[/mm] zu bestimmen.


Ok, ich hätte die Aufgabenstellung nicht "überfliegen" sollen. ;-)
Natürlich ist hier die obere Fläche gemeint. Ich löse es jetzt mal allgemein...
Wir ziehen die obige Fläche also von dem Rechteck unter [mm]f[/mm] im Intervall [mm]\left[-\sqrt c, \sqrt c\right][/mm] ab. Die Intervalllänge ist die Breite des Rechtecks und [mm]f(x) = c[/mm] seine Höhe. Damit erhalten wir für [mm]A[/mm]:


[mm]2\sqrt c c - 2\int_0^{\sqrt c}{x^2 \mathrm{d}x} = 2\left(\sqrt c c - \frac{c^{3/2}}{3}\right) = A \gdw \frac{3}{2}A = 3\sqrt c c - \sqrt{c}^3 = \sqrt c\left(3c - c\right) = 2c\sqrt c \gdw c\sqrt c = c^{3/2} = \frac{3}{4}A \gdw c = \sqrt[3]{\frac{9}{16}A^2}[/mm]


Jetzt nur noch den Wert für [mm]A[/mm] einsetzen und fertig.



Viele Grüße
Karl





Bezug
                
Bezug
Flächenberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:04 Do 19.01.2006
Autor: Tobi252

Erstmal danke für deine Antwort aber ich hab noch zwei Fragen. Erst einmal wie kamst du auf den Wert 9 ? Und dann weiß ich jetzt ehrlich gesagt nicht wie ich hier bei dem Integral 2 ... (kann das jetzt nicht weiter schreiben, weil ich nicht weiß wie das geht )  wie ich da jetzt weiter rechne.
Ich bin das eigentlich nur gewohnt mit Zahlen zu rechnen und nicht mit Variablen und ich weiß jetzt nicht wie ich das rechnen soll.

Bezug
                        
Bezug
Flächenberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:18 Do 19.01.2006
Autor: Karl_Pech


> Erst einmal wie kamst du auf den Wert 9 ?


Ich habe mir meinen Artikel nochmal durchgelesen und dort nirgendwo eine solche Zahl finden können. [kopfkratz3] Wo habe ich sie denn erwähnt? [verwirrt]


> Und dann
> weiß ich jetzt ehrlich gesagt nicht wie ich hier bei dem
> Integral 2 ... (kann das jetzt nicht weiter schreiben, weil
> ich nicht weiß wie das geht )  wie ich da jetzt weiter
> rechne.
> Ich bin das eigentlich nur gewohnt mit Zahlen zu rechnen
> und nicht mit Variablen und ich weiß jetzt nicht wie ich
> das rechnen soll.  


Du könntest dir für den Anfang []folgenden Artikel durchlesen, oder nimm dir dein Schulbuch zur Hand. Dort müßte das doch auch erklärt werden? Frage dann hier nach, wenn Du konkrete Verständnisprobleme hast.



Grüße
Karl





Bezug
                                
Bezug
Flächenberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:36 Do 19.01.2006
Autor: Tobi252

*Peinlich*, sehe gerade, dass ich g mit ner 9 verwechselt habe. Die Zahl und der Buchstabe sahen sich nämlich in deinen Post so ähnlich. Danke für die Antwort.

Bezug
        
Bezug
Flächenberechnung: Fehler in 1. Antwort.
Status: (Antwort) fertig Status 
Datum: 00:19 Fr 20.01.2006
Autor: leduart

Hallo Tobi
Wenn du dir eine Zeichnung machst, siehst du, dass karl sich geirrt hat. Die eingeschlossene Fläche ist nicht die unter der Parabel, die man mit dem Integral ausrechnet. Du musst das Ergebnis von dem Rechteck der Höhe c und Breite [mm] 2*\wurzel{c} [/mm] abziehen, oder ausrechnen :
2* [mm] \integral_{0}^{\wurzel{c}} [/mm] {(c [mm] -x^{2})dx}. [/mm]
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de