www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Längen, Abstände, Winkel" - Flächenberechnung
Flächenberechnung < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Flächenberechnung: Korrektur
Status: (Frage) beantwortet Status 
Datum: 20:25 Di 04.03.2008
Autor: Markus110

Aufgabe
Es sind vier in einer Ebene liegende Punkte gegeben A(3;0;-1), B(4;-1;-2), C(-1;3;1) und D(-4;6;4).
Ermitteln Sie die Strecke CD. Auf der Geraden durch die Punkte C und D existiert ein Punkt [mm] C_1, [/mm] so dass das Trapez [mm] ABC_1 [/mm] D den doppelten Flächeninhalt wie das Trapez ABCD hat. Berechnen Sie den Punkt [mm] C_1 [/mm]

In Aufgabe a wurde bewiesen, dass das ABCD ein Trapez ist (Strecke AB ist parallel CD, die Strecken AD und BC sind es nicht).

CD= [mm] \begin{pmatrix} -1 \\ 3 \\ 1 \end{pmatrix} [/mm] + u [mm] \begin{pmatrix} -3 \\ 3 \\ 3 \end{pmatrix} [/mm]

Betrag CD= [mm] \wurzel{(-3)^2 + 3^2 + 3^2 } [/mm] = [mm] \wurzel{27} [/mm] L.E.

A=m*h (Trapez) und m= [mm] \bruch{a+c}{2} [/mm]

A= [mm] \bruch{a+c}{2} [/mm] *h <=> c= [mm] \bruch{2A}{h} [/mm] -a

für [mm] C_1 [/mm] soll A doppelt so groß sein, also 2*A eingesetzt in

c= [mm] \bruch{4A}{h} [/mm] -a <=> [mm] \bruch{4mh}{h} [/mm] -a <=> 4m-a

c=4m-a ;
c ist der Betrag der Strecke CD und a der der Strecke AB

also AD=a= [mm] \begin{pmatrix} 3 \\ 0 \\ -1 \end{pmatrix} [/mm] + t [mm] \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix} [/mm]
Betrag= [mm] \wurzel{3} [/mm] L.E.

und c siehe oben, dann fehlt noch m aus:
c=2m-a <=> m= [mm] \bruch{c}{2} [/mm] +a = [mm] \bruch{\wurzel{27}}{2} [/mm] + [mm] \wurzel{3} [/mm] = [mm] \wurzel{18,75} [/mm] L.E.

und jetzt für den doppelten Flächeninhalt:

[mm] c_1=4m-a [/mm] = [mm] 4*\wurzel{18,75} [/mm] - [mm] \wurzel{3} [/mm] = [mm] \wurzel{243} [/mm] L.E.

Der Betrag von: u [mm] \begin{pmatrix} -3 \\ 3 \\ 3 \end{pmatrix} [/mm] sollte nur noch die Länge [mm] \wurzel{243} [/mm] L.E. haben.

= [mm] \wurzel{v^2 * ((-3)^2 + 3^2 + 3^2} [/mm] = v* [mm] \wurzel{27} [/mm] = [mm] \wurzel{243} [/mm]
v=+/- 3

Dies eingesetzt in DC (wegen der Richtung) = [mm] \begin{pmatrix} -4 \\ 6 \\ 4 \end{pmatrix} [/mm] + 3 [mm] \begin{pmatrix} 3 \\ -3 \\ -3 \end{pmatrix} [/mm]
ergibt für [mm] C_1 [/mm] (5;-3;-5).

Stimmt das? Ich hoffe, dass vor allem der Part mit dem Formelumstellungen richtig war. Danke schonmal im vorraus. LG Markus


        
Bezug
Flächenberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:49 Di 04.03.2008
Autor: Veronika87

Hallo,
du hast einen kleinen Fehler beim umformen gemacht. und zwar an der stelle: c=2m-a <=> m=c/2-a muss es heißen m=(c-a)/2 rechne doch ab der stelle noch mal das Ergebniss aus.
Viel Erfolg

Bezug
                
Bezug
Flächenberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:25 Di 04.03.2008
Autor: Markus110

Danke erstmal für die Korrektur.
Habe es mit m=(c-a)/2 probiert, dann kommt aber für [mm] c_1 [/mm] , v=1 raus. Das wäre aber die ursprüngliche Gerade DC!

Die Formel m= [mm] \bruch{a+c}{2} [/mm] war schon in der Flächenformel gegeben hab ich jetzt gesehen, mit dieser kommt dann für [mm] c_1 [/mm] = [mm] \wurzel{147} [/mm] raus
und für v= +/-2 [mm] \bruch{1}{3} [/mm] raus. Ich werde jetzt nochmal alles rechnen und die Höhe h dabei bestimmen. Damit müßte es dann aber stimmen.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de