www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Flächenberechnung Dreieck R³
Flächenberechnung Dreieck R³ < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Flächenberechnung Dreieck R³: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:54 Sa 02.12.2006
Autor: f1ne

Aufgabe
Aufgabe 4.
Berechne die Fläche des Dreiecks im [mm] \IR³ [/mm] mit den Eckpunkten [mm] P=\pmat{ 1 & 1 & 1 } Q=\pmat{ 2 & -8 & 6 } [/mm] und [mm] R=\pmat{ -1 & 0 & 4 } [/mm]

Ähm, A= [mm] \bruch{g*h}{2} [/mm] ? Das wars dann auch schon, ich hab überhaupt keine Ahnung. Kann mir da wer weiterhelfen ?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Flächenberechnung Dreieck R³: Antwort
Status: (Antwort) fertig Status 
Datum: 14:56 Sa 02.12.2006
Autor: Bastiane

Hallo f1ne!

> Aufgabe 4.
>  Berechne die Fläche des Dreiecks im [mm]\IR³[/mm] mit den
> Eckpunkten [mm]P=\pmat{ 1 & 1 & 1 } Q=\pmat{ 2 & -8 & 6 }[/mm] und
> [mm]R=\pmat{ -1 & 0 & 4 }[/mm]
>  Ähm, A= [mm]\bruch{g*h}{2}[/mm] ? Das wars
> dann auch schon, ich hab überhaupt keine Ahnung. Kann mir
> da wer weiterhelfen ?

Die Formel stimmt schon mal. Weißt du denn auch, was g und h sind? g ist die Grundseite. Die kannst du ganz einfach berechnen, indem du die Strecke zwischen zweien deiner Punkte berechnest, kannst dir zwei Punkte aussuchen, und dann einfach subtrahieren. Und dann fehlt noch die Höhe h. Eine Höhe steht immer senkrecht, also musst du eine Senkrechte auf deine Grundseite angeben. Du kannst z. B. eine Geradengleichung für die Höhe aufstellen, indem du den dritten Punkt nimmst (denn durch den soll die Höhe ja gehen), und dann nimmst du einen Vektor, der senkrecht auf der Grundseite steht als Richtungsvektor. Aber wie du auf einen senkrechten Vektor kommst, da fällt mir gerade keine schnelle Lösung ein. Jedenfalls, wenn du solch eine Gleichung hast, musst du noch den Abstand zwischen dem dritten Punkt und der Grundseite berechnen, und damit hast du die Höhe. Und dann nur noch in deine obige Formel einsetzen.

Viele Grüße
Bastiane
[cap]

Bezug
        
Bezug
Flächenberechnung Dreieck R³: Antwort (fehlerhaft)
Status: (Antwort) fehlerhaft Status 
Datum: 15:11 Sa 02.12.2006
Autor: ManuP

Man kann das auch mit den Vektoren Berechnen.

Sei [mm] \overrightarrow{PQ} [/mm] der Vektor von P nach Q
Sei [mm] \overrightarrow{PR} [/mm] der Vektor von P nach R

So ist der Flächeninhalt des Pralellograms

[mm] |\overrightarrow{PQ}|*|\overrightarrow{PR}| [/mm]

Der des Dreiecks gerade die Hälfte, also

[mm] |\overrightarrow{PQ}|*|\overrightarrow{PR}*\bruch{1}{2} [/mm]

lg ManuP

Bezug
                
Bezug
Flächenberechnung Dreieck R³: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:37 Sa 02.12.2006
Autor: f1ne

Manup, deine Antwort habe ich mir auch gerade gedacht. Weil 2 Punkte + Vektor ja nen Spat aufspannen und das ein Parallelogramm ist, nur du hast ein * benutzt müsste es aber nicht das Kreuzprodukt sein ? Oder habe ich da in der Vorlesung was falsch verstanden ?

Gibt es eigentlich eine Flächenformel für ein Spat im R³ ?

Bezug
                        
Bezug
Flächenberechnung Dreieck R³: Antwort
Status: (Antwort) fertig Status 
Datum: 16:12 Sa 02.12.2006
Autor: M.Rex

Hallo.

Es werden die Längen zweier Vektoren multipliziert, also "normale" Zahlen.

Hier brauchst du kein Kreuzprodukt.

Die Schreibweise [mm] \vec{a}*\vec{b}=d [/mm] bezeichnet meistens das Skalarprodukt, bei dem eine Zahl d - mathematisch ein Skalar - herauskommt.

Das Kreuzprodukt, bei dem ein Vektor als Ergebnis herauskommt, schreibt man meistens mit [mm] \times [/mm]
Also
[mm] \vec{a}\times\vec{b}=\vec{n}. [/mm]

Hierbei steht [mm] \vec{n} [/mm] senkrecht auf [mm] \vec{a} [/mm] und [mm] \vec{b} [/mm]
Aber, da [mm] \vec{n}\perp\vec{a} [/mm] und [mm] \vec{n}\perp\vec{b} [/mm]
[mm] \vec{n}*\vec{a}=0 [/mm] und [mm] \vec{n}*\vec{b}=0. [/mm]

Also: Achte darauf, welches Produkt benutzt wird.

Marius

Bezug
                                
Bezug
Flächenberechnung Dreieck R³: Korrekturmitteilung
Status: (Korrektur) kleiner Fehler Status 
Datum: 17:24 Sa 02.12.2006
Autor: Marc

Hallo Marius,

alles richtig, nur hier müsste wirklich das Kreuzprodukt verwendet werden.

Viele Grüße,
Marc

Bezug
                        
Bezug
Flächenberechnung Dreieck R³: Antwort
Status: (Antwort) fertig Status 
Datum: 17:21 Sa 02.12.2006
Autor: Marc

Hallo f1ne,

> Manup, deine Antwort habe ich mir auch gerade gedacht. Weil
> 2 Punkte + Vektor ja nen Spat aufspannen und das ein
> Parallelogramm ist, nur du hast ein * benutzt müsste es
> aber nicht das Kreuzprodukt sein ? Oder habe ich da in der
> Vorlesung was falsch verstanden ?

Ja, Du hast völlig Recht:

Die Zahl [mm] $|\overrightarrow{PQ}\times \overrightarrow{PR}|$ [/mm] ist der Flächeninhalt des von den Vektoren [mm] $\overrightarrow{PQ}$ [/mm] und [mm] $\overrightarrow{PR}$ [/mm] aufgespannten Parallelogramms.
Der Flächeninhalt des Dreiecks ist dann die Hälfte.

> Gibt es eigentlich eine Flächenformel für ein Spat im R³ ?

Ein Spat ist ja ein Körper - Meinst Du tatsächlich die Formel für die Oberfläche?
Wenn die drei Vektoren [mm] $\vec [/mm] a$, [mm] $\vec [/mm] b$, [mm] $\vec [/mm] c$ aufspannen, dann ist die Oberfläche:

[mm] $O=2*\left( |\vec a\times\vec b|+|\vec a\times\vec c|+|\vec b\times\vec c|\right)$ [/mm]

Das Volumen beträgt:

[mm] $V=\vec a\times\vec b*\vec [/mm] a$ ("Spatprodukt")

Viele Grüße,
Marc

Bezug
                                
Bezug
Flächenberechnung Dreieck R³: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:49 Sa 02.12.2006
Autor: f1ne

Also ich rechne das jetzt einfach mal vor, sorry ihr habt mich noch mehr verunsichert als vorher... darum bitte mal durchschauen

[mm] \vmat{ \pmat{ 1 \\ -9 \\ 5 } \times \pmat{ -2 \\ -1 \\ 3} } [/mm] = [mm] \wurzel{(-22)²+(-13)²+(-19)²} [/mm] = [mm] \wurzel{1014}*\bruch{1}{2}\approx [/mm] 15.92 [LE]

richtig ?

Bezug
                                        
Bezug
Flächenberechnung Dreieck R³: Antwort
Status: (Antwort) fertig Status 
Datum: 22:18 Sa 02.12.2006
Autor: Bastiane

Hallo f1ne!

> Also ich rechne das jetzt einfach mal vor, sorry ihr habt
> mich noch mehr verunsichert als vorher... darum bitte mal
> durchschauen
>  
> [mm]\vmat{ \pmat{ 1 \\ -9 \\ 5 } \times \pmat{ -2 \\ -1 \\ 3} }[/mm]
> = [mm]\wurzel{(-22)²+(-13)²+(-19)²}[/mm] =
> [mm]\wurzel{1014}*\bruch{1}{2}\approx[/mm] 15.92 [LE]
>  
> richtig ?

Bis auf die Schreibweise schon. Die Wurzel aus dem Kreuzprodukt beträgt [mm] \wurzel{1014}. [/mm] Und nicht [mm] wurzel{1014}*\bruch{1}{2}. [/mm] Schon klar, dass du danach durch zwei teilen musst, aber so kannst du das nicht aufschreiben.

Viele Grüße
Bastiane
[cap]

Bezug
                
Bezug
Flächenberechnung Dreieck R³: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:49 Sa 02.12.2006
Autor: f1ne

19,352 [FE] ? kannst du das vielleich mal kurz bestätigen ?

Bezug
                        
Bezug
Flächenberechnung Dreieck R³: Antwort
Status: (Antwort) fertig Status 
Datum: 17:21 Sa 02.12.2006
Autor: ManuP

Das erhalte ich auch, genauer:
[mm] \wurzel{1498}\approx13.35 [/mm]

Bezug
                
Bezug
Flächenberechnung Dreieck R³: Formel gilt nur für Rechtecke
Status: (Korrektur) fundamentaler Fehler Status 
Datum: 17:15 Sa 02.12.2006
Autor: Marc

Hallo ManuP

> Man kann das auch mit den Vektoren Berechnen.
>  
> Sei [mm]\overrightarrow{PQ}[/mm] der Vektor von P nach Q
>  Sei [mm]\overrightarrow{PR}[/mm] der Vektor von P nach R
>  
> So ist der Flächeninhalt des Pralellograms
>  
> [mm]|\overrightarrow{PQ}|*|\overrightarrow{PR}|[/mm]

Diese Formel gilt nur, falls [mm] $\overrightarrow{PQ}$ [/mm] und [mm] $\overrightarrow{PR}$ [/mm] senkrecht aufeinander stehen (was hier nicht der Fall ist).
  

> Der des Dreiecks gerade die Hälfte, also
>  
> [mm]|\overrightarrow{PQ}|*|\overrightarrow{PR}*\bruch{1}{2}[/mm]

Viele Grüße,
Marc

Bezug
                        
Bezug
Flächenberechnung Dreieck R³: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:30 Sa 02.12.2006
Autor: ManuP

Auweija...
stimmt.

ich habe mich auch gerade gewundert, warum 15.927 herauskommt, wenn ich das mit dem Kreuzprodukt rechne.

SORRY.

Korrekt berechnet man den Flächeninhalt so:

Sei [mm] \overrightarrow{PQ} [/mm] der Vektor von P nach Q
Sei [mm] \overrightarrow{PR} [/mm] der Vektor von P nach R

Dann ist [mm] |\overrightarrow{PQ}x\overrightarrow{PR}| [/mm] der Flächeninhalt des aufgespannten parallelogramms.
Da das Dreieck genau den halben Inhalt hat, gilt als für die Fläche A:

A= [mm] |\overrightarrow{PQ}x\overrightarrow{PR}|*\bruch{1}{2} [/mm]


lg Manu.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de