www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Flächenberechnungen
Flächenberechnungen < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Flächenberechnungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:18 So 17.09.2006
Autor: M.M.

Aufgabe
f(x)= 1/16 [mm] x^3 [/mm]  Df= R
a. Zeichne Gf im Bereich [-4;4]
b. P sei der Punkt von Gf im ersten Quadranten, der von den    
    Koordinatenachsen denselben Abstand hat.
c. Berechne den Inhalt des Flächenstücks zwischen Gf, der x-Achse und der
    Ordinate von P
d. Berechne den Inhalt des Flächenstücks zwischen Gf, der y-Achse und  
    dem Lot von P auf die y-Achse.
e. Berechne den Inhalt des Segments zwischen Gf und der
    Ursprungsgeraden durch P im ersten Quadranten.
f. Berechne den Inhalt des Flächenstücks, das begrenzt ist von Gf, der
   x-Achse und der Tangente von P.
g. Berechne den Inhalt des Flächenstücks, das begrenzt ist von Gf und der
    Tangente von P.

Ok, also ehrlich gesagt scheitert es bei mir bereits beim Zeichnen, sind mit -4 und 4 die Werte für x und f(x) gemeint, die ich in die Funktion einsetzen muss, um die Punkte im Koord.-System herauszurechen?
Ist bei Aufgabe b. P dann (2/2)?
Außerdem habe ich noch Probleme mit den Begriffen, was bedeutet Ordinate, Lot, Segment?

Ich bin für jede Hilfe dankbar!


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Flächenberechnungen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:52 So 17.09.2006
Autor: informix

Hallo Marie,
> f(x)= 1/16 [mm]x^3[/mm]  Df= R
>  a. Zeichne Gf im Bereich [-4;4]

[Dateianhang nicht öffentlich]

>  b. P sei der Punkt von Gf im ersten Quadranten, der von
> den    
> Koordinatenachsen denselben Abstand hat.
>  c. Berechne den Inhalt des Flächenstücks zwischen Gf, der
> x-Achse und der
> Ordinate von P
>  d. Berechne den Inhalt des Flächenstücks zwischen Gf, der
> y-Achse und  
> dem Lot von P auf die y-Achse.
>  e. Berechne den Inhalt des Segments zwischen Gf und der
> Ursprungsgeraden durch P im ersten Quadranten.
>  f. Berechne den Inhalt des Flächenstücks, das begrenzt ist
> von Gf, der
> x-Achse und der Tangente von P.
>  g. Berechne den Inhalt des Flächenstücks, das begrenzt ist
> von Gf und der
> Tangente von P.
>  Ok, also ehrlich gesagt scheitert es bei mir bereits beim
> Zeichnen, sind mit -4 und 4 die Werte für x und f(x)
> gemeint, die ich in die Funktion einsetzen muss, um die
> Punkte im Koord.-System herauszurechen?

nein, sondern der Bereich (=MBIntervall) auf der x-Achse, über dem du die Funktion zeichnen sollst.

>  Ist bei Aufgabe b. P dann (2/2)?

Vielleicht, aber du musst noch prüfen, ob dieser Punkt auch auf dem Graphen liegt:
für einen solchen Punkt muss gelten: [mm] P(x_P|y_P) [/mm] mit [mm] $x_P [/mm] = [mm] y_P [/mm] = [mm] f(x_P)$ [/mm]

>  Außerdem habe ich noch Probleme mit den Begriffen, was
> bedeutet Ordinate, Lot, Segment?

[guckstduhier] MBOrdinate = zweite Koordinate eines Punktes = Wert auf der y-Achse
MBLot = die kürzeste Verbindung eines Punktes zu einer Geraden
[]Segment ist nicht eindeutig gefragt.

>  
> Ich bin für jede Hilfe dankbar!

Gruß informix


Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                
Bezug
Flächenberechnungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:10 So 17.09.2006
Autor: M.M.

ok, ich habe jetzt die Zeichnung gemacht, der Punkt P ist dann (4/4) und (-4/-4), können es denn zwei Punkte sein? Und reicht es, wenn ich den Punkt nur aufgrund der Zeichnung angebe?

Bezug
                        
Bezug
Flächenberechnungen: Winkelhalbierende
Status: (Antwort) fertig Status 
Datum: 15:14 So 17.09.2006
Autor: informix


> ok, ich habe jetzt die Zeichnung gemacht, der Punkt P ist
> dann (4/4) und (-4/-4), können es denn zwei Punkte sein?
> Und reicht es, wenn ich den Punkt nur aufgrund der
> Zeichnung angebe?

nein, das reicht i.a. nicht.
Aber: wo liegen denn alle Punkte, die von den Achsen gleich weit entfernt sind?
auf den Winkelhalbierenden im Koordinatensystem.
Kennst du deren Funktionsgleichung?
und dann setzt du diese Funktionsterm(e) gleich mit der gegebenen Funktion und bestimmst so die Schnittpunkte.

Gruß informix


Bezug
                                
Bezug
Flächenberechnungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:07 So 17.09.2006
Autor: M.M.

ja stimmt, so kann man es machen, ich habe dann f(x)=x mit derangegebenen funktion gleichgesetzt und dann auch 4 herausbekommen, was ich wieder in f(x)= x eingesetzt habe.
bei der flächenberechnung von c. habe ich als ergebnis 8, weil:
1/2 A = [mm] \integral_{0}^{4}If(x)I\, [/mm] dx
1/2 A = [mm] \integral_{o}^{4}I1/64x^4I\, [/mm] dx
1/2 A = 4-0 = 4
A = 8

ist das richtig gedacht?
(danke für die bisherige hilfe)

Bezug
                                        
Bezug
Flächenberechnungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:32 So 17.09.2006
Autor: M.M.

und wird in aufgabe f nicht eigentlich der gleiche flächeninhalt berechnet wie in aufgabe c? oder was ist dort anders in c habe ich doch auch P als schnittpunkt zur beendigung der fläche genommen, und meint tangente in P nicht das gleiche?

außerdem habe ich bei d 24 heraus, aber nur, weil ich vom quadrat die errechnete fläche von c abgezogen habe, wie kann man es mit dem Integral machen?
bei e ist die fläche 4, aber meint die aufgabe, dass man auch die fläche im minusbereich dazurechnen soll (also 8) oder wie ist das gemeint?

Bezug
                                                
Bezug
Flächenberechnungen: Rechenweg?
Status: (Antwort) fertig Status 
Datum: 08:16 Mo 18.09.2006
Autor: informix


> und wird in aufgabe f nicht eigentlich der gleiche
> flächeninhalt berechnet wie in aufgabe c? oder was ist dort
> anders in c habe ich doch auch P als schnittpunkt zur
> beendigung der fläche genommen, und meint tangente in P
> nicht das gleiche?

nein, in c) hattest du eine senkrechte Berenzung der Fläche mit x = [mm] f(x_P), [/mm]
in f) wird die Tangente durch P zur Begrenzungslinie, die bestimmt nicht senkrecht ist.

>  
> außerdem habe ich bei d 24 heraus, aber nur, weil ich vom
> quadrat die errechnete fläche von c abgezogen habe, wie
> kann man es mit dem Integral machen?

Zeig uns bitte mal deine Rechnung, so ist das nicht nachzuvollziehen.

>  bei e ist die fläche 4, aber meint die aufgabe, dass man
> auch die fläche im minusbereich dazurechnen soll (also 8)
> oder wie ist das gemeint?

Auch hier wäre dein Rechenweg hilfreich, um drüber zu diskutieren.

Gruß informix

Bezug
                                        
Bezug
Flächenberechnungen: Betrag außen
Status: (Antwort) fertig Status 
Datum: 08:12 Mo 18.09.2006
Autor: informix


> ja stimmt, so kann man es machen, ich habe dann f(x)=x mit
> derangegebenen funktion gleichgesetzt und dann auch 4
> herausbekommen, was ich wieder in f(x)= x eingesetzt habe.
> bei der flächenberechnung von c. habe ich als ergebnis 8,
> weil:
>  1/2 A = [mm]\integral_{0}^{4}If(x)I\,[/mm] dx
>  1/2 A = [mm]\integral_{o}^{4}I1/64x^4I\,[/mm] dx
>  1/2 A = 4-0 = 4
>  A = 8
>  
> ist das richtig gedacht?
>  (danke für die bisherige hilfe)

Das ist i.a. falsch. Du willst den Betrag des ganzen Integrals bestimmen:
1/2 A = [mm]|\integral_{0}^{4}{f(x) dx}|[/mm]
und dann verdoppeln.

Gruß informix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de