www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Flächenbestimmung
Flächenbestimmung < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Flächenbestimmung: Tipp,Idee
Status: (Frage) beantwortet Status 
Datum: 10:08 Sa 06.12.2008
Autor: plutino99

Hallo liebe Forum-Freunde

Leider komme ich bei einer Aufgabe nicht weiter,deshalb bitte ich euch um eure Hilfe:

Aufgabe:

Zwischen dem Graphen der Funktion [mm] f(x)=\bruch{1}{a}x^3+a^2 [/mm] (a>0) und der x-Achse liegt über dem Intervall [0;1] eine Fläche.

a) Fertigen Sie für a=1 eine Skizze an.Berechnen Sie den Inhalt der Fläche a=1.

b)Für welchen Wert von a wird der Inhalt der Fläche minimal?

Liederr weiß ich überhaupt nicht wie ich vorgehen soll.Ich würde mich über eure Hilfe freuen.

Vielen Dank im Voraus

MfG

Hasan

        
Bezug
Flächenbestimmung: Integration
Status: (Antwort) fertig Status 
Datum: 10:33 Sa 06.12.2008
Autor: tomekk

Hallo,

zu Teil a)

setze a=1 in deine Gleichung ein, dann bekommst du eine Funktion 3. Grades, die um 1 an der y-Achse verschoben ist. Somit kannst du sie direkt zeichnen oder du machst dir eine Wertetabelle.
Um die Fläche auszurechnen musst du das Integral über deinem Intervall (0,1) bilden, das mit a=1 folgendermaßen aussehen müsste:
[mm] \integral_{0}^{1}{(x^3 + 1) dx} [/mm]

Ausrechnen und du erhältst deine Fläche.

zu Teil b)

Nur soviel: Um etwas zu maximieren bzw. minimieren rechnet man immer mit der ersten und zweiten Ableitung!

Viel Erfolg! :)

Bezug
                
Bezug
Flächenbestimmung: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 18:08 So 07.12.2008
Autor: plutino99

Erstmals vielen Dank für die angebotene Hilfe

Nur habe ich noch eine Vertsändnisfrage zur Teilaufgabe b):

Muss ich von der gegeben Funktion die erste und zweite Ableitung anwenden und damit rechnen,oder mit der Stammfunktion,also iintegrierten Funktion weiterrechnen?

Vielen dank im Voraus

MfG
Hasan

Bezug
                        
Bezug
Flächenbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:48 So 07.12.2008
Autor: M.Rex

Hallo

Berechne mal

[mm] \integral_{0}^{1}\bruch{1}{a}x³+a²dx [/mm]
[mm] =\left[\bruch{1}{4a}x^{4}+a²x\right]_{0}^{1} [/mm]
[mm] =\left[\bruch{1}{4a}1^{4}+a²*1\right]-\left[\bruch{1}{4a}0^{4}+a²*0\right] [/mm]
[mm] =\bruch{1}{4a}+a² [/mm]

Also ist die Fläche mit der Funktion [mm] A(a)=\bruch{1}{4a}+a² [/mm]

Und davon suchst du jetzt das Minimum, also A'(a)=0 und A''(a)>0

Marius

Bezug
                                
Bezug
Flächenbestimmung: Korrektur,Rückfrage
Status: (Frage) beantwortet Status 
Datum: 17:27 Di 09.12.2008
Autor: plutino99

Vielen Dank für die angebotene Hilfe

Mein Ergebnis lautet folgendermaßen:

[mm] A'(a)=-\bruch{1}{4a^2}+2a=0\Rightarrow =\bruch{1}{2} [/mm]

A''(a)= [mm] \bruch{1}{8a^3}+2 [/mm]
[mm] A''(\bruch{1}{2})=3 [/mm]

Somit wird die Fläche für den Wert [mm] a=\bruch{1}{2} [/mm] minimal.

Aber wie kriege ich denn den minimalen Flächeninhalt raus?
Würd mich über eure hilfe freuen.

Vielen Dank im Voraus

MfG
Hasan



Bezug
                                        
Bezug
Flächenbestimmung: einsetzen
Status: (Antwort) fertig Status 
Datum: 19:08 Di 09.12.2008
Autor: Loddar

Hallo Hasan!


> Mein Ergebnis lautet folgendermaßen:
>  
> [mm]A'(a)=-\bruch{1}{4a^2}+2a=0\Rightarrow =\bruch{1}{2}[/mm]

[ok]

  

> A''(a)= [mm]\bruch{1}{8a^3}+2[/mm]

[notok] Das muss heißen: $A''(a) \ = \ [mm] \bruch{1}{2*a^3}+2$ [/mm]

  

> Somit wird die Fläche für den Wert [mm]a=\bruch{1}{2}[/mm] minimal.

[ok]

  

> Aber wie kriege ich denn den minimalen Flächeninhalt raus?

Setze den ermittelten Werte [mm] $a_{\min} [/mm] \ = \ [mm] \bruch{1}{2}$ [/mm] in die Flächenfunktion $A(a) \ = \ ...$ ein.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de