www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - Flächenbestimmung im Rechteck
Flächenbestimmung im Rechteck < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Flächenbestimmung im Rechteck: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:18 Do 27.04.2006
Autor: mangaka

Aufgabe
Ein Dachbogen hat als Querschnitssfläche ein gleichschenkliges Dreieck mit einer Höhe von 4,8m und einer Breite von 8m. In ihm soll ein möglichst großes quaderförmiges Zimmer eingerichtet werden.

=> Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Moin alle zusammen,
ich weis ihr kennt diese Frage schon bereits, denn ich habe sie schon 1 oder 2mal hier im Forum gelesen, aber ich selbst habe nichts gefunden, was mit weitergeholfen hätte.
Ich erzähl euch mal was ich vorhatte:
Ich wollte das große Dreieck in 2 teilen, damit ich 2 Rechtecke habe. Nun wollte ich in einem von diesen Rechtecken ein Viereck erstellen, das eine möglichst große Fläche einnimmt.
Als Nebenbedingung dachte ich mir, dass die Fläche des Vierecks kleiner sein muss als die des Rechtecks.
Ab nun weis ich nicht mehr weiter... Ich weis nicht, wie ich jetzt die Nebenbedingung in die Zielfunktion miteinbringe, nur noch eine Var zu haben.

Ich hoffe ihr könnt mir weiterhelfen, wenn nicht erfahre ich es morgen in der Schule :)

        
Bezug
Flächenbestimmung im Rechteck: Nebenbedingung: Strahlensatz
Status: (Antwort) fertig Status 
Datum: 21:20 Fr 28.04.2006
Autor: Loddar

Hallo  mangaka,

[willkommenmr] !!


Hast Du Dir denn mal eine Skizze gemacht? Seien die gesuchten Abmessungen des Raumes $b_$ und $h_$ .

Dann kann man nun auf die halbierte Figur (rechwinkliges Dreieck sowie halber Raum) den Stahlensatz anwenden:

[mm] [quote]$\bruch{h}{\bruch{8}{2}-\bruch{b}{2}} [/mm] \ = \ [mm] \bruch{4.8}{\bruch{8}{2}}$[/quote] [/mm]

Dies kann man nun umformen nach $h \ = \ ...$ und in die Hauptbedingung [mm] $A_{\text{Rechteck}} [/mm] \ = \ b*h \ = \ ...$ einsetzen.


Mit der entstandenen Zielfunktion $A(b) \ = \ ...$ ist nun die Extremwertberechnung (Nullstellen der 1. Ableitung etc.) durchzuführen.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de