www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Flächeninhalt Affensattel
Flächeninhalt Affensattel < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Flächeninhalt Affensattel: Integration übr Flächenstücke
Status: (Frage) beantwortet Status 
Datum: 22:59 Fr 16.11.2012
Autor: DonC

Aufgabe
S:= ((x,y,z)[mm]\in\IR^{3} [/mm] : [mm] x²+y²\le1 [/mm] und [mm] z=\frac{1}{3}x^3-xy^2) [/mm]
Bestimmen sie den Flächeninhalt von S.

Hallo,
Ich arbeite mit dem Ansatz "Integration über Flächenstücke im Raum". D.h. ich parametrisiere das Flächenstück zu [mm] \Phi=\vektor{x \\ y \\ \frac{1}{3}x^3-xy^2)} [/mm] und bilde [mm] |\Phi_{x}x\Phi_{y}|. [/mm] Das ergibt allg. bei Funktionen [mm] \sqrt{f_{x}^{2}+f_{y}^{2}+1} [/mm] und somit hier, nach Vereinfachungen [mm] \sqrt{1+(x^2+y^2)^2}. [/mm] Nun habe ich um die Fläche F(S) zu erhalten das Integral [mm] \integral\integral_{\overline{J}}|\Phi_{x}x\Phi_{y}|dxdy= \integral\integral_{\overline{J}}\sqrt{1+(x^2+y^2)^2}dxdy [/mm] aufgestellt. Nun kommt der Punkt, bei welchem ich mir nicht mehr ganz sicher bin. Ich habe das Integral auf Polarkoordinaten transformiert, mit [mm] x=cos\varphi [/mm] , [mm] y=sin\varphi. [/mm] Die Funktionaldeterminante [mm] (det(J\psi(r,\varphi)) [/mm] ist bei Polarkoodrinaten gerade der Radius r und bei obigem Integral steht [mm] (x^2+y^2)^2\hat [/mm] = r. Also komme ich auf folgendes Integral [mm] \integral\integral_{\overline{J}}{\sqrt{1+r^2}*r d\varphi dr} [/mm] = [mm] \integral_{0}^{1}{\integral_{0}^{2\pi}{\sqrt{1+r^2}*r d\varphi dr}}. [/mm] Hier kann etwas nicht stimmen da ein Hinweis gebeben ist, dass man das [mm] \integral{\sqrt{1+r^2}dr} [/mm] mithilfe der Substitution r=sinh(t) lösen kann. In der Aufgabenstellung ist ja gegeben, dass r=1 ist. Das darf ich jetzt aber nicht für nur ein r einsetzen? Sind das zwei verschiedene Radien? Kann mir jemand weiterhelfen?



Mfg DonC

        
Bezug
Flächeninhalt Affensattel: Antwort
Status: (Antwort) fertig Status 
Datum: 11:21 Sa 17.11.2012
Autor: rainerS

Hallo!

> S:= ((x,y,z)[mm]\in\IR^{3}[/mm] : [mm]x²+y²\le1[/mm] und
> [mm]z=\frac{1}{3}x^3-xy^2)[/mm]
>  Bestimmen sie den Flächeninhalt von S.
>  Hallo,
>  Ich arbeite mit dem Ansatz "Integration über
> Flächenstücke im Raum". D.h. ich parametrisiere das
> Flächenstück zu [mm]\Phi=\vektor{x \\ y \\ \frac{1}{3}x^3-xy^2)}[/mm]
> und bilde [mm]|\Phi_{x}x\Phi_{y}|.[/mm] Das ergibt allg. bei
> Funktionen [mm]\sqrt{f_{x}^{2}+f_{y}^{2}+1}[/mm] und somit hier,
> nach Vereinfachungen [mm]\sqrt{1+(x^2+y^2)^2}.[/mm] Nun habe ich um
> die Fläche F(S) zu erhalten das Integral
> [mm]\integral\integral_{\overline{J}}|\Phi_{x}x\Phi_{y}|dxdy= \integral\integral_{\overline{J}}\sqrt{1+(x^2+y^2)^2}dxdy[/mm]
> aufgestellt. Nun kommt der Punkt, bei welchem ich mir nicht
> mehr ganz sicher bin. Ich habe das Integral auf
> Polarkoordinaten transformiert, mit [mm]x=cos\varphi[/mm] ,
> [mm]y=sin\varphi.[/mm] Die Funktionaldeterminante
> [mm](det(J\psi(r,\varphi))[/mm] ist bei Polarkoodrinaten gerade der
> Radius r und bei obigem Integral steht [mm](x^2+y^2)^2 = r[/mm].

Falsch: [mm](x^2+y^2)^2 = r^{{\red{4}}[/mm].

> Also komme ich auf folgendes Integral
> [mm]\integral\integral_{\overline{J}}{\sqrt{1+r^2}*r d\varphi dr}[/mm]

[mm]\integral\integral_{\overline{J}}{\sqrt{1+r^{{\red{4}}}}*r d\varphi dr}[/mm]

> = [mm]\integral_{0}^{1}{\integral_{0}^{2\pi}{\sqrt{1+r^2}*r d\varphi dr}}.[/mm]

[mm]\integral_{0}^{1}{\integral_{0}^{2\pi}{\sqrt{1+r^{{\red{4}}}}*r d\varphi dr}[/mm]

> Hier kann etwas nicht stimmen da ein Hinweis gebeben ist,
> dass man das [mm]\integral{\sqrt{1+r^2}dr}[/mm] mithilfe der
> Substitution r=sinh(t) lösen kann.

Ja, substituiere zunächst [mm] $z=r^2$, [/mm] was auf [mm]\integral{\sqrt{1+z^2}dz}[/mm] führt.

> In der Aufgabenstellung
> ist ja gegeben, dass r=1 ist.

Das stimmt nicht. Dort steht nur [mm] $x^2+y^2\le [/mm] 1$, also $r<1$. Genau deswegen integrierst du doch über r.

  Viele Grüße
    Rainer

Bezug
                
Bezug
Flächeninhalt Affensattel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:11 Sa 17.11.2012
Autor: DonC

Hallo Rainer,
danke für deine Antwort. Sie hat mir sehr weitergeholfen.  Somit komme ich, nach Umformung, auf das Integral  [mm] \pi\integral_{0}^{1}{\sqrt{1+z^2}dz}=\pi\integral_{0}^{ln(1+\sqrt{2})}{cosh^{2}(t)}dt=\pi[\bruch{1}{8}e^{2t}+\bruch{1}{4}t-\bruch{1}{8}e^{-2t}]_{0}^{ln(1+\sqrt{2})}. [/mm]


MfG

DonC

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de