www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Flächeninhalt unbest. Integral
Flächeninhalt unbest. Integral < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Flächeninhalt unbest. Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:52 Di 19.09.2006
Autor: paraskous

Aufgabe
[mm] x^3-x+n [/mm]

Ermitteln Sie n so, dass der Flächeninhalt über und unter der x-Achse gleich groß ist.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich habe mich wieder mal hinter die Schulmathematik geklemmt und muss feststellen, dass sich da einige Lücken auftun. Gerade bei Parameteraufgaben fällt mir oft die Lösung schwer. Hier muss ich absolut passen.

Stammfunktion kann ich problemlos ermitteln:

F(x) = 1/4 [mm] x^4 [/mm] - 1/2 [mm] x^2 [/mm] + nx

Aber eigentlich möchte ich bei der Aufgabe die NS suchen, welche ich aber nicht bestimmen kann.  
Ich habe auch schon diese und ähnliche Funktionen mit Derive geplottet und versucht darüber eine Lösung zu finden: Erfolglos.
Matheaufgaben, die ich nicht gelöst kriege machen mich wahnsinnig: Ich weiß, da gibt es eine Lösung, aber ich finde einfach keinen Ansatz.

        
Bezug
Flächeninhalt unbest. Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 20:06 Di 19.09.2006
Autor: Teufel

Hallo!

Naja, ich würde so rangehen:
Das n verschiebt die Funktion nur nach oben oder unten auf der y-Achse.

f(x)=x³-x ohne das n wäre schon punktsymmetrisch um O(0|0) (nur ungerade Exponenten).
Naja und wenn du dir die Funktion aufzeichnest dann sieht du schon dass dafür beide Flächen gleich groß sind ;) n müsste also 0 sein.

Bezug
                
Bezug
Flächeninhalt unbest. Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:21 Di 19.09.2006
Autor: paraskous

OK, vielen Dank, das ist plausibel.

Was mache ich aber, wenn überhaupt keine Symmetrie festzustellen ist, wie etwa bei:

f(x) = [mm] x^5+x^2+n [/mm] ?

Dann können doch auch "oberer" und "unterer" Bogen unterschiedlich sein.
Soll man dann nach der Wendestelle suchen? Die müsste dann aber genau in der Mitte liegen, d.h. beide Intervalle wären gleich groß. Ich weiß nicht ob diese Annahme richtig ist.
Wie ich es drehe und wende: Ich muss doch die Nullstellen bestimmen, oder?

0 = [mm] x^5+x^2+n [/mm] krieg ich aber nicht gelöst.

Thomas


Bezug
                        
Bezug
Flächeninhalt unbest. Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 20:34 Di 19.09.2006
Autor: Teufel

Ja, da wüsste ich leider auch nicht weiter. Aber ich glaube so eine Aufgabe stellt kein normaler Mensch ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de