Flächeninhaltsfunktion < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 23:09 So 12.07.2009 | Autor: | Mandy_90 |
Aufgabe | Gesucht ist jeweils der Inhalt A der Fläche unter den Graphen von [mm] f(x)=\bruch{1}{x^{2}}, [/mm] I=[1;4] und [mm] g(x)=\bruch{1}{(x-1)^{2}}, [/mm] I=[2;3].
a) Begründen Sie, weshalb f und g keine Flächeninhaltsfunktion zur unteren Grenze 0 besitzen.
b) Errechnen Sie den Inhalt A nach geeigneter Verschiebung der Graphen von f und g. |
Hallo zusammen^^
Ich hab ein paar Schwierigkeiten bei dieser Aufgabe.Ich hoffe ihr könnt mir weiterhelfen.
a) Also bei f(x) ist es klar,warum die Funktion keine FIF zur unteren Grenze 0 besitzt,denn sie ist nicht für 0 definiert.
Aber bei g(x) versteh ich nicht,warum die Funktion keine FIF besitzt.Die Funktion ist für definiert und wird auch nicht negativ und ist differenzierbar.Warum hat sie dann keine Flächeninhaltsfunktion zur unteren Grenze 0?
b) Also geometrisch weiß ich wie ich die Graphen verschieben muss,aber ich weiß nicht wie ich das in die Funktion schreiben soll.Bei f(x) hätte ich den Graphen um 1 nach links verschoben und geschrieben [mm] f(x)=\bruch{1}{x^{2}+1}, [/mm] und bei g(x) hätte ich den Graphen um 2 nach links verschoben und [mm] g(x)=\bruch{1}{(x-1)^{2}+2}.Wäre [/mm] das so richtig?
Vielen Dank
lg
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:50 So 12.07.2009 | Autor: | leduart |
Hallo
1. bei der 2. fkt wird ja dann ueber die 1, wo ein Pol ist intgriert, Untere Grenze 0 obere Grenze <1 ginge.
Wenn du eine fkt f(x) um a nach rechts verschiebst, hat sie die form f(x-a) ueberleg warum. Was du gemacht hast ist falsch.
Also die parabel [mm] f(x)=x^2 [/mm] um 1 nach rechts verschoben ist [mm] f(x)=(x-1)^2
[/mm]
nach links um 2 verschoben [mm] f(x)=(x+2)^2
[/mm]
warum du die erst fkt verschieben sollst, versteh ich nicht. die 2te ist leichter zu integrieren, wenn du sie um 1 nach links schiebst. (die Grenzen dann aber auch ) Dann hast du statt g wieder f
Gruss leduart
|
|
|
|