www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Fluß durch F
Fluß durch F < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fluß durch F: Integralsatz von Gauß
Status: (Frage) beantwortet Status 
Datum: 08:47 Fr 18.09.2009
Autor: blumich86

Aufgabe
Es sei F die Oberfläche des Zylinders mit Grundfläche [mm] 1/4x^2+y^2<=9, [/mm] der von den Ebenen z=0 und z=2 begrenzt wird. Es sei [mm] \overrightarrow{v}(x,y,z)=(x^2-1, [/mm] y-1, [mm] y+z^2) [/mm] ein Vektorfeld. Berechnen Sie den Fluß von [mm] \overrightarrow{v} [/mm] durch die Fläche F.

diese Frage habe ich in keinen anderen Forum gestellt.

hallo,

in der Munsterlösung sind sie so vorgegangen, dass sie aus

[mm] 1/4x^2 [/mm] + [mm] y^2 [/mm] <= 9 <=> [mm] x^2/6^2 [/mm] + [mm] y^2/2 [/mm] <= 1 gemacht haben.

warum sind sie so vorgegangen was ist das ziel dabei??


        
Bezug
Fluß durch F: Antwort
Status: (Antwort) fertig Status 
Datum: 09:40 Fr 18.09.2009
Autor: fred97


> Es sei F die Oberfläche des Zylinders mit Grundfläche
> [mm]1/4x^2+y^2<=9,[/mm] der von den Ebenen z=0 und z=2 begrenzt
> wird. Es sei [mm]\overrightarrow{v}(x,y,z)=(x^2-1,[/mm] y-1, [mm]y+z^2)[/mm]
> ein Vektorfeld. Berechnen Sie den Fluß von
> [mm]\overrightarrow{v}[/mm] durch die Fläche F.
>  diese Frage habe ich in keinen anderen Forum gestellt.
>  
> hallo,
>  
> in der Munsterlösung sind sie so vorgegangen, dass sie
> aus
>  
> [mm]1/4x^2[/mm] + [mm]y^2[/mm] <= 9 <=> [mm]x^2/6^2[/mm] + [mm]y^2/2[/mm] <= 1 gemacht haben.
>  
> warum sind sie so vorgegangen was ist das ziel dabei??


Vielleicht damit man besser sieht, dass es sich bei

              $ [mm] 1/4x^2+y^2 \le [/mm] 9$

um eine Ellipse handelt ?

In dieser Darstellung

               $ [mm] x^2/6^2 [/mm] + [mm] y^2/2 \le [/mm] 1$

kann man die Länge der Halbachsen schön ablesen



Edit: richtig muß es lauten:

[mm] $\bruch{x^2}{4}+y^2 \le [/mm] 9  [mm] \gdw \bruch{x^2}{36}+\bruch{y^2}{9} \le [/mm] 1$


FRED


FRED

>  


Bezug
                
Bezug
Fluß durch F: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:08 Fr 18.09.2009
Autor: blumich86

wie liest man den in dieser form $ [mm] x^2/6^2 [/mm] + [mm] y^2/2 \le [/mm] 1 $ die halbachse??? also was stellt was da??

Bezug
                        
Bezug
Fluß durch F: Antwort
Status: (Antwort) fertig Status 
Datum: 10:14 Fr 18.09.2009
Autor: fred97

Ich merke gerade, dass ich oben einen Fehler  übersehen habe:


Richtig lautet es:

   [mm] $\bruch{x^2}{4}+y^2 \le [/mm] 9  [mm] \gdw \bruch{x^2}{36}+\bruch{y^2}{9} \le [/mm] 1$

Ellipse mit der Halbachse der Länge 6 in x-Richtung und  Halbachse der Länge 3 in y-Richtung


FRED

Bezug
                                
Bezug
Fluß durch F: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:38 Fr 18.09.2009
Autor: blumich86

vielen dank für deine antwort
gruss

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de