www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Flussintegral berechnen
Flussintegral berechnen < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Flussintegral berechnen: Koordinaten Problem
Status: (Frage) beantwortet Status 
Datum: 16:30 Mo 04.04.2011
Autor: jaood

Aufgabe
Es soll das Flussintegral [mm] $\iint\limits_S \vec{v} \cdot d\vec{O}$ [/mm] des Vektorfeldes
[mm] \begin{displaymath} \vec{v}(x,y,z)= \begin{pmatrix} 1+z^4 \\ 1+z^4 \\ 1+x^2y^2 \end{pmatrix} \end{displaymath} [/mm]
durch die Fläche $S$, welche durch die Parametrisierung
[mm] \begin{displaymath} \vec{x}(u,v)=\begin{pmatrix} u \\ v \\ \frac{1}{4}\cdot u \cdot v \end{pmatrix} \quad \text{ mit } |u| \leq 1, |v|\leq 1 \end{displaymath} [/mm]
gegeben ist, berechnet werden.

Hallo Leute,

habe Probleme mit der oben stehenden Aufgabe. Mein Problem bezieht sich auf die unterschiedlichen variablen. Wenn ich das Oberflächenelement bereche, dann erhalte ich für das Integral:
[mm] \iint\limits_S \vec{v} \cdot d\vec{O} [/mm] = [mm] \int_{-1}^{1}\int_{-1}^{1} \begin{pmatrix} 1+z^4 \\ 1+z^4 \\1 +x^2y^2 \end{pmatrix} \times \begin{pmatrix} - \frac{1}{4}v \\ - \frac{1}{4}u \\ 1 \end{pmatrix} [/mm] dudv

Die Integrationsvariablen sind ja u und v. Ich möchte also wahrscheinlich [mm] z^4 [/mm] und [mm] x^2y^2 [/mm] durch u und v darstellen. Wie kann ich das machen, bzw was ist hier das richtige Vorgehen?

Vielen Dank im voraus!

        
Bezug
Flussintegral berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:58 Mo 04.04.2011
Autor: Al-Chwarizmi


> Es soll das Flussintegral [mm]\iint\limits_S \vec{v} \cdot d\vec{O}[/mm]
> des Vektorfeldes
> [mm]\begin{displaymath} \vec{v}(x,y,z)= \begin{pmatrix} 1+z^4 \\ 1+z^4 \\ 1+x^2y^2 \end{pmatrix} \end{displaymath}[/mm]
>  
> durch die Fläche [mm]S[/mm], welche durch die Parametrisierung
> [mm]\begin{displaymath} \vec{x}(u,v)=\begin{pmatrix} u \\ v \\ \frac{1}{4}\cdot u \cdot v \end{pmatrix} \quad \text{ mit } |u| \leq 1, |v|\leq 1 \end{displaymath}[/mm]
>  
> gegeben ist, berechnet werden.
>  Hallo Leute,
>  
> habe Probleme mit der oben stehenden Aufgabe. Mein Problem
> bezieht sich auf die unterschiedlichen variablen. Wenn ich
> das Oberflächenelement bereche, dann erhalte ich für das
> Integral:
> [mm]\iint\limits_S \vec{v} \cdot d\vec{O}[/mm] =
> [mm]\int_{-1}^{1}\int_{-1}^{1} \begin{pmatrix} 1+z^4 \\ 1+z^4 \\1 +x^2y^2 \end{pmatrix} \times \begin{pmatrix} - \frac{1}{4}v \\ - \frac{1}{4}u \\ 1 \end{pmatrix}\ du\ dv[/mm]       [haee]
>  
> Die Integrationsvariablen sind ja u und v. Ich möchte also
> wahrscheinlich [mm]z^4[/mm] und [mm]x^2y^2[/mm] durch u und v darstellen. Wie
> kann ich das machen, bzw was ist hier das richtige
> Vorgehen?
>
> Vielen Dank im voraus!  



Hallo jaood,

bei der vorliegenden Aufgabe ist es natürlich so, dass
für die Punkte der Fläche S
x(u,v)=u und y(u,y)=v ist, sowie [mm] z(u,v)=\frac{1}{4}*u*v [/mm]

Der Übersichtlichkeit halber ist es aber wohl trotzdem
eine ganz gute Idee, für die Integration alles mittels
der Variablen u und v zu schreiben.

Wie du vom Integranden mit dem Skalarprodukt  [mm] \vec{v} \cdot d\vec{O} [/mm]
zu einem mit einem Vektorprodukt kommst, ist mir
rätselhaft (obwohl ein Vektorprodukt zur Berech-
nung des Normalenvektors mit im Spiel war)



LG    Al-Chw.


Bezug
                
Bezug
Flussintegral berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:03 Mo 04.04.2011
Autor: jaood

Vielen Dank für die schnelle Antwort. Habe das Prinzip nun verstanden.

Das Kreuzprodukt hat dort natürlich nichts verloren, es handelt sich um ein Flüchtigkeitsfehler.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de