www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Folge: Punktweise Konvergenz
Folge: Punktweise Konvergenz < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folge: Punktweise Konvergenz: Definition
Status: (Frage) beantwortet Status 
Datum: 19:15 Mo 19.05.2008
Autor: Pacapear

Hallo!

Ich habe nur eine kurze Frage zur Definition der punktweisen Konvergenz.
Wir haben folgende Definition:

Eine Folge [mm] (f_n) [/mm] von Funktionen [mm] f_n:M\to\IC [/mm] heißt punktweise konvergent auf M, wenn für jedes [mm] z\in [/mm] M die Folge [mm] (f_n(z)) [/mm] konvergiert.

Das ist mir soweit klar (denke ich :-)).
Das heißt doch einfach nur, dass eine Folge punktweise konvergent heißt, wenn die Folge für jeden Punkt des Definitionsbereiches konvergiert, oder?

Frage 1
Muss die Folge [mm] (f_n(z)) [/mm] für jeden Punkt gegen die gleiche Grenzfunktion streben?



Nun habe ich im Buch (nachdem der Prof vorgeht) zu der Definition noch eine Formel gegeben:

[mm] \limes_{n\rightarrow\infty}f_n(z)=f(z) [/mm]

Frage 2
Wenn ich das so lese, heißt das für mich eigentlich "der Limes der FUNKTION [mm] f_n(z)" [/mm] statt "der Limes der FUNKTIONSFOLGE [mm] f_n(z)", [/mm] weil wir damals in Analysis I Folgen immer mit einer Klammer drum geschrieben haben.
Das verwirrt mich grad ein bisschen.
Im Grenzwert ist doch schon die Folge gemeint, oder?
Also nach meiner Schreibweise [mm] \limes_{n\rightarrow\infty}(f_n(z))=f(z), [/mm] oder?

Danke für eure Hilfe.

LG, Nadine

        
Bezug
Folge: Punktweise Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 19:28 Mo 19.05.2008
Autor: Gonozal_IX

Hallo Nadine,

der punktweise Limes ist letztlich nichts anderes als:

Ich nehme mir ein [mm]z \in D(f_n)[/mm], halte es fest und betrachte die Folge [mm](f_n(z))_{n\in\IN}[/mm] und nenne den Grenzwert nicht f, sondern f(z), da der Grenzwert ja von meinem gewählten z abhängt.
Die Funktion, die mir nun zu jedem [mm]z \in D(f_n)[/mm] den Grenzwert f(z) liefert, nennt man "Grenzfunktion".

>  Das heißt doch einfach nur, dass eine Folge punktweise
> konvergent heißt, wenn die Folge für jeden Punkt des
> Definitionsbereiches konvergiert, oder?

Genau das :-)

>  
> Frage 1
>  Muss die Folge [mm](f_n(z))[/mm] für jeden Punkt gegen die gleiche
> Grenzfunktion streben?

Letztlich gibts darauf nur die Antwort "Ja", denn die Grenzfunktion ist ja gerade so definiert, dass [mm](f_n(z))_{n\in\IN}[/mm] gegen die Grenzfunktion strebt.
Wenn du meinst, ob der Grenzwert f(z) für jedes z immer gleich sein muss, lautet die Antwort "Nein". Betrachte dazu doch einfach mal:

[mm]f_n(z) = \frac{nz}{1+nz}, z\in [0,\infty)[/mm]


> Nun habe ich im Buch (nachdem der Prof vorgeht) zu der
> Definition noch eine Formel gegeben:
>  
> [mm]\limes_{n\rightarrow\infty}f_n(z)=f(z)[/mm]
>  
> Frage 2
>  Wenn ich das so lese, heißt das für mich eigentlich "der
> Limes der FUNKTION [mm]f_n(z)"[/mm] statt "der Limes der
> FUNKTIONSFOLGE [mm]f_n(z)",[/mm] weil wir damals in Analysis I
> Folgen immer mit einer Klammer drum geschrieben haben.
>  Das verwirrt mich grad ein bisschen.
>  Im Grenzwert ist doch schon die Folge gemeint, oder?
>  Also nach meiner Schreibweise
> [mm]\limes_{n\rightarrow\infty}(f_n(z))=f(z),[/mm] oder?

Ja, es ist die Folge in n, also wie oben schon geschrieben[mm](f_n(z))_{n\in\IN}[/mm]
In der Grenzwertbetrachtung lässt man die Klammern eigentlich weg, insofern war Analysis I bei dir anscheinend etwas unorthodox ;-)

Man schreibt ja auch [mm]\limes_{n\rightarrow\infty}\frac{1}{n}[/mm] und nicht [mm]\limes_{n\rightarrow\infty}(\frac{1}{n})[/mm]

Liebe Grüße,
Gono.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de