www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Folge einer Matrix
Folge einer Matrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folge einer Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:19 Fr 12.02.2010
Autor: ms2008de

Aufgabe
Sei A= [mm] \bruch{1}{2} [/mm] * [mm] \pmat{ 1 & 2 & 4 \\ 0 & -1 & 2 \\ 0 & 1 & 1 }. [/mm]
Untersuchen Sie, ob die Folge [mm] (A^n)_{n \in \IN} [/mm] in Mat(3 [mm] \times [/mm] 3, [mm] \IR) [/mm] konvergiert und bestimmen Sie gegebenfalls den Grenzwert.

Hallo,
Ich hab starke Schwierigkeiten hier überhaupt mal auf eine Idee zu kommen, wie ich prüfen kann, ob diese Folge konvergiert.
Was ich weiß ist, wenn A diagonialisierbar wäre, dann wäre [mm] A^n [/mm] = T* [mm] D^n *T^{-1}. [/mm]
Aber da diese Matrix so "krumme" Eigenwerte hat, bin ich der festen Überzeugung, dass sie nicht diagonalisierbar ist.

Die Frage ist nur, wie ich mal auf einen Ansatz komme, wäre euch um jede Hilfe dankbar.

Viele Grüße

        
Bezug
Folge einer Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 09:41 Fr 12.02.2010
Autor: felixf

Hallo!

> Sei A= [mm]\bruch{1}{2}[/mm] * [mm]\pmat{ 1 & 2 & 4 \\ 0 & -1 & 2 \\ 0 & 1 & 1 }.[/mm]
>  
> Untersuchen Sie, ob die Folge [mm](A^n)_{n \in \IN}[/mm] in Mat(3
> [mm]\times[/mm] 3, [mm]\IR)[/mm] konvergiert und bestimmen Sie gegebenfalls
> den Grenzwert.
>
>  Hallo,
>  Ich hab starke Schwierigkeiten hier überhaupt mal auf
> eine Idee zu kommen, wie ich prüfen kann, ob diese Folge
> konvergiert.
>  Was ich weiß ist, wenn A diagonialisierbar wäre, dann
> wäre [mm]A^n[/mm] = T* [mm]D^n *T^{-1}.[/mm]

Genau.

>  Aber da diese Matrix so
> "krumme" Eigenwerte hat, bin ich der festen Überzeugung,
> dass sie nicht diagonalisierbar ist.

Was bedeutet "krumme" Eigenwerte bei dir? Wenn die Matrix drei verschiedene Eigenwerte hat, dann ist sie diagonalisierbar. (Das ist hier der Fall, und so "krumm" sind die gar nicht.)

Nehmen wir mal an, die Matrix hat die Eigenwerte [mm] $\lambda_1, \lambda_2, \lambda_3$. [/mm] Fuer den Grenzwert ist ja der Grenzwert von [mm] $D^n$ [/mm] fuer $n [mm] \to \infty$ [/mm] zu betrachten, und falls dieser existiert, so ist er [mm] $\pmat{ \lim_{n\to\infty} \lambda_1^n & 0 & 0 \\ 0 & \lim_{n\to\infty} \lambda_2^n & 0 \\ 0 & 0 & \lim_{n\to\infty} \lambda_3^n }$ [/mm] -- und er existiert genau dann, wenn alle drei Limiten existieren.

So, und wann konvergiert [mm] $(\lambda^n)_{n\in\IN}$? [/mm] Falls [mm] $|\lambda| [/mm] < 1$ ist, geht das gegen 0. Falls [mm] $|\lambda| [/mm] > 1$ ist, divergiert es. Und fuer [mm] $\lambda [/mm] = 1$ konvergiert es, und fuer [mm] $\lambda [/mm] = -1$ schliesslich nicht.

Damit kannst du also sagen, ob [mm] $\lim_{n\to\infty} A^n$ [/mm] existiert oder nicht. Und falls es kein [mm] $\lambda$ [/mm] mit [mm] $\lambda [/mm] = 1$ gibt, kannst du im Falle der Konvergenz auch den Grenzwert angeben: dieser ist naemlich 0.

LG Felix


Bezug
                
Bezug
Folge einer Matrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:26 Fr 12.02.2010
Autor: ms2008de

Vielen dank dafür noch, habs hinbekommen, die Folge konvergiert, weil die 3 Eigenwerte Betrag [mm] \le [/mm] 1 haben

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de