www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Folge mit Wurzel
Folge mit Wurzel < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folge mit Wurzel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:50 Mi 30.11.2011
Autor: steve.joke

Hallo

wie bestimme ich bei dieser folge [mm] \limes_{n\rightarrow\infty}\bruch{\wurzel{2n}-1}{\wurzel{n}+1} [/mm] den Grenzwert?

Ich habe es probiert, indem ich den Nenner und Zähler mit [mm] \wurzel{n}-1 [/mm] erweitert habe, aber das hat mich irgendwie nicht zum ziel gebracht.

das ergebnis muss [mm] \wurzel{2} [/mm] sein.

Danke schon mal für hilfe.

Grüße

        
Bezug
Folge mit Wurzel: Antwort
Status: (Antwort) fertig Status 
Datum: 11:53 Mi 30.11.2011
Autor: donquijote


> Hallo
>  
> wie bestimme ich bei dieser folge
> [mm]\limes_{n\rightarrow\infty}\bruch{\wurzel{2n}-1}{\wurzel{n}+1}[/mm]
> den Grenzwert?
>  
> Ich habe es probiert, indem ich den Nenner und Zähler mit
> [mm]\wurzel{n}-1[/mm] erweitert habe, aber das hat mich irgendwie
> nicht zum ziel gebracht.

dann erweitere mal mit [mm] 1/\sqrt{n} [/mm]

>  
> das ergebnis muss [mm]\wurzel{2}[/mm] sein.
>  
> Danke schon mal für hilfe.
>  
> Grüße


Bezug
                
Bezug
Folge mit Wurzel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:54 Mi 30.11.2011
Autor: steve.joke

Ach klar :-)

Danke dir.

Grüße

Bezug
        
Bezug
Folge mit Wurzel: Antwort
Status: (Antwort) fertig Status 
Datum: 12:14 Mi 30.11.2011
Autor: fred97


> Hallo
>  
> wie bestimme ich bei dieser folge
> [mm]\limes_{n\rightarrow\infty}\bruch{\wurzel{2n}-1}{\wurzel{n}+1}[/mm]
> den Grenzwert?
>  
> Ich habe es probiert, indem ich den Nenner und Zähler mit
> [mm]\wurzel{n}-1[/mm] erweitert habe, aber das hat mich irgendwie
> nicht zum ziel gebracht.

Das müßte Dich eigentlich zum Ziel bringen. Deine Idee ist zwar umständlicher, als der Vorschlag von donqujote, aber dennoch gewinnbringend.

Rechne mal vor.

FRED

>  
> das ergebnis muss [mm]\wurzel{2}[/mm] sein.
>  
> Danke schon mal für hilfe.
>  
> Grüße


Bezug
                
Bezug
Folge mit Wurzel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:59 Mi 30.11.2011
Autor: steve.joke

Hi FRED,

also mit dem Hinweis von donqujote habe ich es hinbekommen.

Mit meiner Idee nicht so ganz. Schau mal bitte:

[mm] \bruch{\wurzel{2n}-1}{\wurzel{n}+1}= \bruch{(\wurzel{2n}-1)(\wurzel{n}-1)}{(\wurzel{n}+1)(\wurzel{n}-1)}=\bruch{2n^2-\wurzel{2n}-\wurzel{n}+1}{n-1} [/mm]

So, jetzt wusste ich nicht mehr weiter....

Bezug
                        
Bezug
Folge mit Wurzel: Antwort
Status: (Antwort) fertig Status 
Datum: 16:07 Mi 30.11.2011
Autor: MathePower

Hallo steve.joke,

> Hi FRED,
>  
> also mit dem Hinweis von donqujote habe ich es hinbekommen.
>
> Mit meiner Idee nicht so ganz. Schau mal bitte:
>  
> [mm]\bruch{\wurzel{2n}-1}{\wurzel{n}+1}= \bruch{(\wurzel{2n}-1)(\wurzel{n}-1)}{(\wurzel{n}+1)(\wurzel{n}-1)}=\bruch{2n^2-\wurzel{2n}-\wurzel{n}+1}{n-1}[/mm]
>  


Hier muss es doch heissen:

[mm]\bruch{\blue{\wurzel{2}n}-\wurzel{2n}-\wurzel{n}+1}{n-1}[/mm]


> So, jetzt wusste ich nicht mehr weiter....


Jetzt kannst Du durch ausklammern von n im Zähler und Nenner
Nullfolgen erzeugen und damit den Grenzwert für [mm]n\to \infty[/mm] bilden.


Gruss
MathePower

Bezug
                                
Bezug
Folge mit Wurzel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:10 Mi 30.11.2011
Autor: steve.joke

Ok, an der [mm] \wurzel{2} [/mm] hats gelegen.

Danke für den Tipp.

Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de