www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Folge und Grenzwert
Folge und Grenzwert < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folge und Grenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:28 Mo 01.06.2009
Autor: Rominchen

Aufgabe
Nutzten Sie nun dieses Ergebnis, um die Folge [mm] b_n [/mm] = [mm] \wurzel[n]{a^n+c^n} [/mm]  mit [mm] 0\le a\le [/mm] c auf Konvergenz zu untersuchen und bestimmen Sie gegebenenfalls den Grenzwert.

Halli hallo,
also das Ergebnis der letzten Aufgabe lautet: a-epsilon [mm] \le [/mm] a+epsilon --> [mm] \begin{vmatrix} b_n-a \end{vmatrix} \le [/mm] q
also [mm] b_n [/mm] --> a

Wie bringe ich nun dieses Ergebnis, mit der Folge [mm] b_n [/mm] in Verbindung?? Habt ihr einen Anstoß???Danke...

        
Bezug
Folge und Grenzwert: ausklammern
Status: (Antwort) fertig Status 
Datum: 16:32 Mo 01.06.2009
Autor: Loddar

Hallo Rominchen!


Klammere unter der Wurzel zunächst [mm] $c^n$ [/mm] aus und ziehe es anschließend vor die Wurzel.


Gruß
Loddar


Bezug
                
Bezug
Folge und Grenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:18 Di 02.06.2009
Autor: Rominchen

Ok, aber dieses n über der Wurzel macht mir irgendwie Probleme.. Soetwas kenne ich gar nicht :-(

Bezug
                        
Bezug
Folge und Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 14:27 Di 02.06.2009
Autor: schachuzipus

Hallo Rominchen,

> Ok, aber dieses n über der Wurzel macht mir irgendwie
> Probleme.. Soetwas kenne ich gar nicht :-(

Einfach mal die Umformung durchführen ...

[mm] $\sqrt[n]{a^n+c^n}=\sqrt[n]{c^n\cdot{}\left[\left(\frac{a}{c}\right)^n+1\right]}=\sqrt[n]{c^n}\cdot{}\sqrt[n]{\left(\frac{a}{c}\right)^n+1}=c\cdot{}\sqrt[n]{\left(\frac{a}{c}\right)^n+1}$ [/mm]

Was passiert nun mit der Wurzel für [mm] $n\to\infty$ [/mm] ? Bedenke, dass [mm] $a\le [/mm] c$ ist, also [mm] $\frac{a}{c}\le [/mm] 1$ ...

LG

schachuzipus


Bezug
                                
Bezug
Folge und Grenzwert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:38 Di 02.06.2009
Autor: Rominchen

Dankeschön, ich denke ich hab es...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de