www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Folgen
Folgen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:53 Do 10.11.2005
Autor: musunoi

Hallo zusammen,

Aufgabe:
Zeige, dass (n!)n∈N schneller gegen Unendlich strebt als jede Exponentialfolge.

Ich muss noch weitere 5 änliche Aussagen beweisen, weiss leider nicht wie es geht. Kann mir jemand weiterhelfen?
Vielen Dank!
musunoi

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:50 Do 10.11.2005
Autor: Stefan

Hallo!

Die Frage ist ja immer, was man bei diesen Aufgaben so voraussetzen darf.

Aus der Konvergenz der Reihe

[mm] $\sum\limits_{n=0}^{\infty} \frac{a^n}{n!}$ [/mm]

folgt ja beispielsweise unmittelbar:

[mm] $\lim\limits_{n \to \infty} \frac{a^n}{n!} [/mm] =0$.

Die Frage ist also, was ihr bisher zu Folgen und Reihen gemacht habt und verwenden dürft.

Liebe Grüße
Stefan

Bezug
                
Bezug
Folgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:53 Do 10.11.2005
Autor: musunoi

Hallo Stefan,

bin mir nicht sicher, ob ich die Konvergenz der Reihen anwenden darf.
Was ich laut Skrpit weiss, ist folgendes:
Wir sagen, dass [mm] b_{n} [/mm]  schneller gegen Unendlich strebt als [mm] a_{n}, [/mm]
wenn auch noch [mm] b_{n}/a_{n} [/mm] → ∞ gilt; entsprechend strebt eine positive Nullfolge [mm] b_{n} [/mm] schneller gegen Null als eine andere [mm] a_{n}, [/mm] wenn auch noch [mm] b_{n}/a_{n} [/mm] → 0 gilt.
Ebenfalls weiss ich noch, dass:
Eine Folge [mm] a_{n}, n\in\IN [/mm] von  reelen Zahlen heißt Unendlichfolge, [mm] a_{n} [/mm] → ∞, wenn für jede gegebene (große) Schranke c ∈  [mm] \IR [/mm] alle Glieder bis auf endlich viele größer als c sind, wenn also zu c eine Nummer [mm] n_{0}(c) [/mm] ∈ N existiert
mit [mm] a_{n}> [/mm] c für alle n ≥ [mm] n_{0}(c). [/mm] Entsprechend heißt [mm] a_{n} [/mm] ∈N Nullfolge, [mm] a_{n} [/mm] → 0, wenn für jedes gegebene (kleine)  [mm] \varepsilon [/mm] > 0 alle bis auf endlich viele an dem Betrage nach kleiner als  [mm] \varepsilon [/mm] sind, wenn es also eine Nummer [mm] n_{0}( \varepsilon) [/mm] gibt mit [mm] |a_{n}| [/mm] <  [mm] \varepsilon [/mm] für alle n ≥ [mm] n_{0}( \varepsilon). [/mm]
Das sind schon viele Informationen, leider etwas zu theoretisch für mich, um sie in den Beweis anwenden zu wissen.

Danke & Gruß,
musunoi

Bezug
                        
Bezug
Folgen: Grenzwertsätze?
Status: (Antwort) fertig Status 
Datum: 07:39 Fr 11.11.2005
Autor: Loddar

Hallo musunoi!


Dürft Ihr denn die Grenzwertsätze verwenden?


Wenn [mm] $a_n$ [/mm] und [mm] $b_n$ [/mm] konvergent [mm] $\Rightarrow$ $\limes_{n\rightarrow\infty}a_n [/mm] * [mm] \limes_{n\rightarrow\infty}b_n [/mm] \ = \ [mm] \limes_{n\rightarrow\infty}\left(a_n*b_n\right)$ [/mm]


[mm] $\limes_{n\rightarrow\infty}\bruch{a^n}{n!} [/mm] \ = \ [mm] \limes_{n\rightarrow\infty}\bruch{\overbrace{a*a*a*...*a}^{n \ Faktoren}}{\underbrace{1*2*3*...*(n-1)*n}_{n \ Faktoren}} [/mm] \ = \ [mm] \limes_{n\rightarrow\infty}\left[\bruch{a}{1}*\bruch{a}{2}* ...* \bruch{a}{n-1}*\bruch{a}{n}\right]$ [/mm]

$= \ [mm] \limes_{n\rightarrow\infty}\bruch{a}{1}*\limes_{n\rightarrow\infty}\bruch{a}{2}*...*\limes_{n\rightarrow\infty} \bruch{a}{n-1}*\limes_{n\rightarrow\infty}\bruch{a}{n} [/mm] \ = \ [mm] a*\bruch{a}{2}*...*\red{0}*\red{0} [/mm] \ = \ 0$


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de