www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Folgen
Folgen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folgen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 16:27 Di 04.08.2020
Autor: Mathemurmel

Aufgabe
Aufgabe: Grenzwerte
Bestimmen Sie, falls Konvergenz der Folge oder Funktion vorliegt, die Grenzwerte für n ∊ N bzw. t > 0
5)  lim┬(n→∞)⁡〖(   2n-1)/(2 n)〗 √(n&2)
6) lim┬(n→∞)⁡〖(   [mm] (-1)^n 2n)/(2n^3- n^2 [/mm] )〗
7) lim┬(n→∞)⁡〖( 2 (1+ [mm] (-1)^n)/7〗 [/mm]
8) lim┬(a→0)⁡〖 ( 1)/(1-r)〗 (1 - a^(1-r))       für a, r > 0   und   r ǂ 1
9) [mm] lim┬(n→∞)⁡〖(y/θ)^n [/mm] 〗       für  0 < y < θ
10) lim┬(t→∞)⁡〖 (   S)/(1+ [mm] (d/t)^c [/mm] )〗         mit  c, d, S > 0
11) lim┬(t→0)⁡〖 (   S)/(1+ [mm] (d/t)^c [/mm] )〗         mit  c, d, S > 0

Ich habe auch die Lösungen zu diesen Aufgaben:
5) 1     6) 0     7) divergent     8) ( 1)/(1-r) für 0 < r < 1           divergent für  r > 1     9) 0     10) S     11) 0
Aber ich zweifele an meinen Lösungsmethoden, denn ich habe fast keine Vorkenntnisse bzgl. Folgen. Gibt es stattdessen professionellere Lösungsmethoden?
Meine Lösungswege, mit denen ich die geg. Lösungen erhalte:
5)  den Bruch  (   2n-1)/(2 n)  erweitere ich mit  1/n  und erhalte 1. Die Wurzel gebe ich in  mathe-fa.de  ein und sehe dann den Kurvenverlauf.
6)  analog 5) und die Folge alterniert.
7)  die Folg alterniert, strebt aber gegen 0.
8)  1 – r  mit  r > 0  und  r ǂ 1 :   Werte, die  1 – r  annehmen kann:   {x| x < 0  v  0 < x < 1}
Für  a^(1-r)  benutze ich wieder  mathe-fa.de
9)  Es gilt   y/θ < 1  also fallende Exponentialfunktion
10)  t→∞:  d/t  geht gegen  0   =>   [mm] (d/t)^c [/mm]  ist eine Potenzfunktion und geht gegen 0  für alle c.
11)  t→0:  d/t  geht gegen  ∞   =>   [mm] (d/t)^c [/mm]  ist eine Potenzfunktion und geht gegen ∞  für alle c.


        
Bezug
Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:44 Di 04.08.2020
Autor: Gonozal_IX

Hiho,

vorab: Deine Aufgaben kann kein Mensch lesen und es wäre munteres Rätselraten…
bitte benutze doch den Formeleditor.

Ich rate mal…

>  5)  lim┬(n→∞)⁡〖(   2n-1)/(2 n)〗 √(n&2)

Das soll vermutlich was werden wie: [mm] $\lim_{n\to\infty} \bruch{2n-1}{2n} \wurzel{\frac{n}{2}}$ [/mm]

>  5)  den Bruch  (   2n-1)/(2 n)  erweitere ich mit  1/n  
> und erhalte 1. Die Wurzel gebe ich in  mathe-fa.de  ein und
> sehe dann den Kurvenverlauf.

Für den ersten Teil ist das ok… die Wurzel geht dann gegen?

>  6) lim┬(n→∞)⁡〖(   [mm](-1)^n 2n)/(2n^3- n^2[/mm] )〗

Rätselraten: [mm] $\lim_{n\to\infty}\bruch{(-1)^n 2n}{2n^3 - n^2}$? [/mm]

Für Brüche gilt immer: Höchste Potenz ausklammern oben und unten… bzw gleichbedeutend: Mit dem Kehrwert der höchsten Potenz erweitern (was du bei 5) ja bereits getan hast).

>  7) lim┬(n→∞)⁡〖( 2 (1+ [mm](-1)^n)/7〗[/mm]

*orakel orakel*
[mm] $\lim_{n\to\infty} \bruch{2(1+(-1)^n)}{7}$ [/mm]

>  7)  die Folg alterniert, strebt aber gegen 0.

Da [mm] $1+(-1)^n \ge [/mm] 0$ alterniert da gar nix.
Betrachte mal gerade und ungerade Folgenglieder seperat.
Geht die Folge der ungeraden Folgenglieder gegen 0?


>  8) lim┬(a→0)⁡〖 ( 1)/(1-r)〗 (1 - a^(1-r))      

*orakel* [mm] $\lim_{a\to 0} \bruch {1-a^{1-r}}{1-r}$ [/mm]

Hier benötigst du eine Fallunterscheidung und keine Internetseite:
Für $r<1$ ist $1-r>0$ und damit ist die Frage analog zu: Was ist [mm] a^k [/mm] für $k>0$ und $a [mm] \to [/mm] 0$?

Für $r>1$ ist $1-r <0$.
Was ist [mm] $a^k$ [/mm] wenn $k<0$ gilt?
Betrachte dann $a [mm] \to [/mm] 0$.

>  9) [mm]lim┬(n→∞)⁡〖(y/θ)^n[/mm] 〗       für  0 < y < θ

*orakel* [mm] $\lim_{n\to\infty} \left(\bruch{y}{\theta}\right)^n$ [/mm]

>  9)  Es gilt   y/θ < 1  also fallende Exponentialfunktion

[ok]
Und was ist nun der Grenzwert?

>  10) lim┬(t→∞)⁡〖 (   S)/(1+ [mm](d/t)^c[/mm] )〗        
> mit  c, d, S > 0

*orakel* [mm] $\lim_{t\to\infty} \bruch{S}{1+\left(\bruch{d}{t}\right)^c}$ [/mm]

>  10)  t→∞:  d/t  geht gegen  0   =>   [mm](d/t)^c[/mm]  ist eine
> Potenzfunktion und geht gegen 0  für alle c.

[ok]
Was ist nun also der Grenzwert?

>  11) lim┬(t→0)⁡〖 (   S)/(1+ [mm](d/t)^c[/mm] )〗  

*orakel* [mm] $\lim_{t\to 0} \bruch{S}{1+\left(\bruch{d}{t}\right)^c}$ [/mm]
      

>  11)  t→0:  d/t  geht gegen  ∞   =>   [mm](d/t)^c[/mm]  ist eine
> Potenzfunktion und geht gegen ∞  für alle c.

[notok]
Was passiert, wenn $t < 0$ permanent gilt?
Was passiert, wenn [mm] $t\to [/mm] 0$ aber alternierend, mal positiv, mal negativ?

Gruß,
Gono


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de