www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Grenzwerte" - Folgen
Folgen < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folgen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 22:44 Di 31.10.2006
Autor: Phoney

Aufgabe
Berechne [mm] $\summe_{i=2}^{n}\br{1}{k(k-1)}$ [/mm]

Mojn...

Wie berechnet man solche Sachen, die theoretisch bis unendlich gehen? Mit einem guten Auge?

Wenn ich jetzt erst einmal herumprobiere

[mm] $\summe_{i=2}^{2}\br{1}{k(k-1)}=\br{1}{2(2-1)}=\br{1}{2}$ [/mm]
[mm] $\summe_{i=2}^{3}\br{1}{k(k-1)}=\br{1}{2(2-1)}+\br{1}{3(3-1)}=\br{1}{2}+\br{1}{6}=\br{4}{6}$ [/mm]
[mm] $\summe_{i=2}^{4}\br{1}{k(k-1)}=\br{1}{2(2-1)}+\br{1}{3(3-1)}+\br{1}{4(4-1)}=\br{1}{2}+\br{1}{6}+\br{1}{12}=\br{9}{12}$ [/mm]

Das hilft mir aber nicht, obwohl ich weiß, dass [mm] 1-\br{1}{n} [/mm] herauskommt.

[mm] $\summe_{i=2}^{n}\br{1}{k(k-1)}=\br{1}{2(2-1)}+\br{1}{3(3-1)}+\br{1}{4(4-1)}+...+\br{1}{n(n-1)}=\br{1}{2}+\br{1}{6}+\br{1}{12}+...+\br{1}{n^2-n}$ [/mm]

Das macht mein Leben aber auch nicht angenehmer. Wie berechne ich das nun???

Danke schon einmal!

Grüße
Phoney



        
Bezug
Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:27 Di 31.10.2006
Autor: ullim

Hi Phoney,

mit Induktion kannst Du es leicht beweisen, da Du ja weisst was raus kommen soll.

mfg ullim

Bezug
        
Bezug
Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:25 Mi 01.11.2006
Autor: ullim

Hi Phoney,

[mm] \summe_{i=2}^{n}\br{1}{k(k-1)}=\summe_{i=2}^{n}(\br{1}{k-1}-\br{1}{k})=1+\summe_{i=2}^{n-1}\br{1}{k}-\summe_{i=2}^{n}\br{1}{k} [/mm]

[mm] =1-\br{1}{n} [/mm] (die Summanden heben sich gegenseitig auf) und das konvergiert gegen 1.

mfg ullim

Bezug
                
Bezug
Folgen: Zum Nachtrag
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:42 Mi 01.11.2006
Autor: Phoney

Hallo ullim.
Deine erste Antwort war toll, dankeschön. Nur laut Aufgabe weiß ich das Ergebnis ja nicht, ich habe einfach meinen TR gefragt :)
Der Tipp wird mir aber für das Prinzip zum Beweisen sehr nützlich sein. Alleine schon dafür möchte ich mich bedanken.

Aber 100% super fand ich deine letztere Antwort. Einfach klasse. Vielen Dank! Und das nicht nur als Floskel. Ist wirklich so gemeint.

Mit den besten Grüßen
Johann



Bezug
                
Bezug
Folgen: Rückfrage zu Rechenschritt
Status: (Frage) beantwortet Status 
Datum: 20:20 So 05.11.2006
Autor: Phoney

Hallo.

Heute fällt mir doch noch eine Frage auf.

Wie kommt man auf [mm] $\summe_{k=2}^{n}\br{1}{k-1} [/mm] = [mm] \summe_{k=2}^{n-1}\br{1}{k}$ [/mm]

????

Ich meine, wenn ich es mir angucke, ist es vollkommen logisch, also ich erhalte ja [mm] $\br{1}{1}+\br{1}{2}+\br{1}{3}+...\br{1}{n-1}$ [/mm] Und jetzt ist einfach die Überlegung, dass ich das [mm] \br{1}{1} [/mm] vor die Summe ziehe und für n-1 wieder da k einsetze, sodass sich ergibt [mm] $\summe_{k=2}^{n-1}\br{1}{k}$ [/mm]

Oder ist das nicht die Überlegung???

Bezug
                        
Bezug
Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:36 So 05.11.2006
Autor: ullim

Hi,


so wie Du gefragt hast, ist es auch nicht,

es gilt

[mm] \summe_{i=2}^{n}\br{1}{k-1}=1+\summe_{i=2}^{n-1}\br{1}{k} [/mm]

die Umformung habe ich gemacht um [mm] \summe_{i=2}^{n-1}\br{1}{k} [/mm] gegen [mm] \summe_{i=2}^{n}\br{1}{k} [/mm] bis auf [mm] \br{1}{n} [/mm] zu kompensieren.

mfg ullim

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de