www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Folgen
Folgen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:25 Do 17.01.2008
Autor: babsbabs

Aufgabe
Man untersuche die Folge [mm] a_n [/mm] (mit Hilfe vollständiger Induktion) auf Monotonie und Beschränktheit und bestimme gegebenenfalls mit Hilfe der bekannten Rechenregeln für Grenzewerte den Grenzwert lim_an:

[mm] (a_0) [/mm] = 3, [mm] a_n_+_1 [/mm] = [mm] \wurzel{2a_n - 1} [/mm] für alle n [mm] \ge [/mm] 0

die Folge müßte streng monoton wachsend sein

der untere Grenzwert und die untere Schranke [mm] \wurzel{2} [/mm]

ich verstehe in dem Zusammenhang nicht genau, was ich mit der vollständigen Induktion hier anfangen soll



        
Bezug
Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:43 Do 17.01.2008
Autor: schachuzipus

Hallo Barbara,

> Man untersuche die Folge [mm]a_n[/mm] (mit Hilfe vollständiger
> Induktion) auf Monotonie und Beschränktheit und bestimme
> gegebenenfalls mit Hilfe der bekannten Rechenregeln für
> Grenzewerte den Grenzwert lim_an:
>
> [mm](a_0)[/mm] = 3, [mm]a_n_+_1[/mm] = [mm]\wurzel{2a_n - 1}[/mm] für alle n [mm]\ge[/mm] 0
>  die Folge müßte streng monoton wachsend sein [kopfkratz3]

Hä? Vertippt? Was hast du denn für zB [mm] a_1 [/mm] heraus??

Die Folge ist doch wohl fallend... ;-)

>
> der untere Grenzwert und die untere Schranke [mm]\wurzel{2}[/mm]

Huch? Wie kommst du auf diese Schranke? Berechne doch mal die ersten - sagen wir 10 Folgenglieder mit dem TR

Ich denke, du solltest zuerst mal zeigen, dass die Folge durch 1 nach unten beschränkt ist.

Da kommt die vollst. Induktion ins Spiel

Danach zeige, dass sie monoton fallend ist. Das geht auch ohne Induktion in 3 Zeilen, wenn du die Beschränktheit verwendest

>  
> ich verstehe in dem Zusammenhang nicht genau, was ich mit
> der vollständigen Induktion hier anfangen soll

Brauchst du für die Beschränktheit: zz: [mm] $\forall n\in\IN [/mm] : [mm] a_n\ge [/mm] 1$

Wenn du Monotonie und Beschränktheit hast, weißt du, dass die Folge konvergent ist, also kannst du den GW berechnen.

Setze dazu [mm] $\lim\limits_{n\to\infty}a_n=\lim\limits_{n\to\infty}a_{n+1}=a$ [/mm] und löse nach $a$ auf


Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de