www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Folgen mit gleichen Grenzwert
Folgen mit gleichen Grenzwert < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folgen mit gleichen Grenzwert: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 19:35 Fr 16.12.2005
Autor: Doreen

Aufgabe
Es seien [mm] $(a_{n})_{n \in \IN}, (b_{n})_{n \in \IN}, (c_{n})_{n\in \IN}$ [/mm] reelle Folgen, für die [mm] $a_{n} \le c_{n} \le b_{n}$ [/mm] für alle $n [mm] \in \IN$ [/mm] gilt.

Zeige, dass wenn [mm] $(a_{n})_{n \in \IN}$ [/mm] und [mm] $(b_{n})_{n \in \IN}$ [/mm] gegen denselben Grenzwert $c [mm] \in \IR$ [/mm] konvergieren, auch [mm] $(c_{n})_{n \in \IN}$ [/mm] gegen $c$ konvergieren muss.

Hallo,

das wäre noch so eine Aufgabe, die ich logisch und nachvollziehbar finde, aber ich bin mir nicht sicher, wie man das wieder mathematisch und Uni-gerecht aufschreibt und beweist...

wenn   lim [mm] a_{n} [/mm] = c  
und      lim [mm] b_{n} [/mm] = c               dann  lim [mm] c_{n} [/mm] = c

Es muss gelten:   [mm] a_{n} \le c_{n} \le b_{n} [/mm]

das heißt, ab einem n [mm] \in \IN [/mm] ist auch [mm] (c_{n}) [/mm] konvergent mit lim [mm] c_{n} [/mm] = c

Also beweise ich doch erstmal [mm] a_{n} \le b_{n} [/mm]  

Die Frage ist nur wie? Also eigentlich mehr in welcher Form, denn
beide konvergieren gegen den gleichen Grenzwert...

lim [mm] |b_{n} [/mm] - [mm] a_{n}| [/mm] = c     ???     für lim n  [mm] \to \infty [/mm]

und dann sage ich [mm] |a_{n} [/mm] - c| <  [mm] \varepsilon [/mm] und [mm] |b_{n} [/mm] - c| <  [mm] \varepsilon [/mm]

und dann einfach weiter umformen?

Über ein wenig unter-die-Arme-greifende-Hilfe wäre ich sehr dankbar.

Gruß und tausend Dank

Doreen

Diese Frage habe ich in keinen anderen Forum gestellt.


        
Bezug
Folgen mit gleichen Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 20:03 Fr 16.12.2005
Autor: mathmetzsch

Hallo,

also Moment, wenn für deine Folgen [mm] a_{n}\le b_{n} [/mm] gilt und beide denselben Grenzwert haben, dann gibt es genau einen Wert, den beide gemeinsam haben (oder sich ihm zumindest nähren), nämlich ihren Grenzwert. Für große n gilt dann also [mm] a_{n}=b_{n}=c. [/mm] Folglich ist der von dir beschriebene Limes nicht c, sondern 0. Und wie geht es jetzt weiter? Überleg mal!

Dass [mm] a_{n}\le b_{n} [/mm] gilt, musst du übrigens nicht beweisen. Das ist die Voraussetzung.

Viele Grüße
Daniel

Bezug
        
Bezug
Folgen mit gleichen Grenzwert: Hinweis
Status: (Antwort) fertig Status 
Datum: 02:09 Sa 17.12.2005
Autor: Loddar

Hallo Doreen!


Verwende hier doch die Intervallschachtelungen aus Deiner anderen Frage / Aufgabe.

Betrachte hierzu [mm] $\lim_{n\rightarrow\infty}\left|a_n-c\right| [/mm] \ = \ [mm] \lim_{n\rightarrow\infty}\left|b_n-c\right| [/mm] \ = \ 0$ und die Eindeutigkeit des Grenzwertes bzw. schließe auf [mm] $\lim_{n\rightarrow\infty}\left|c_n-c\right| [/mm] \ = \ 0$ .


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de