www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Maßtheorie" - Folgen von einfach. Funktionen
Folgen von einfach. Funktionen < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folgen von einfach. Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:21 Sa 20.11.2010
Autor: valoo

Aufgabe
Gesucht ist jeweils eine Folge von einfachen Funktionen [mm] f_{n}:\IR\to\IR, [/mm] die die genannten Eigenschaften erfüllt.

a) [mm] f_{n} [/mm] konvergiert dem Maß [mm] \lambda [/mm] nach gegen ein [mm] f:\IR\to\overline{\IR}, [/mm] jedoch existiert ein A mit [mm] \lambda(A)>0 [/mm] und
[mm] \limes_{n\rightarrow\infty}f_{n}(x)\not=f(x) \forall x\in [/mm] A

b) [mm] f_{n} [/mm] konvergiert [mm] \lambda-fast [/mm] überall gegen ein [mm] f:\IR\to\overline{\IR} [/mm] allerdings konvergiert [mm] f_{n} [/mm] nicht dem Maß [mm] \lambda [/mm] nach gegen f

Hallo!

Also ich hab irgendwie Schwierigkeiten geeignete Funktionenfolgen zu finden. Hab die Sache mit der Konvergenz im Maßsinne auch noch nicht so ganz verstanden...

Ich nehm mir einfach mal eine Funktionenfolge:

[mm] f_{n}(x):=\bruch{1}{n} [/mm]
die konvergiert ja gegen 0, kann man jetzt eine Funktion f definieren, die meinetwegen auf [0,1] nicht 0 ist, aber dennoch [mm] f_{n} [/mm] im Maßsinne dagegen konvergiert?
Das heißt ja, dass für alle [mm] \varepsilon>0 [/mm]
[mm] \lambda(\{x\in\IR||f_{n}(x)-f(x)|>\varepsilon\})\to [/mm] 0 für [mm] n\to\infty [/mm]


Was ist mit f(x)=1 für [mm] x\in\IQ [/mm] und f(x)=0 sonst? Dann konvergiert [mm] f_{n} [/mm] auf jeden fall [mm] \lambda-fast [/mm] überall gegen f. Aber wie ist das dann mit Konvergenz im Maßsinne?

        
Bezug
Folgen von einfach. Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:05 Sa 20.11.2010
Autor: Blech

Hi,

[mm] $\frac1n$ [/mm] ist kein schlechtes Stichwort; die einfachste Methode funktioniert so:

Wir betrachten [mm] $f_n:\ [0,1]\to \IR$. [/mm]

Jedes [mm] $f_n$ [/mm] ist eine Indikatorfunktion auf einem Teilintervall von $[0,1]$

Du fängst mit dem Intervall von 0 bis 1/2 an, die nächste ist dann ein 1/3 breites Intervall rechts daneben (also von 1/2 bis 5/6), dann setzt Du da rechts daneben ein 1/4 breites Intervall hin. Das steht rechts über, also schneiden wir bei 1 ab, und setzen den Rest wieder bei 0 an. Dann daneben ein 1/5 breites Intervall, etc.

Für kein [mm] $x\in [/mm] [0,1]$ konvergiert [mm] $f_n(x)$ [/mm] gegen f(x)=0, aber das Maß schon.



Für die b)
Wenn Du ein endliches Maß hast, also [mm] $\mu(\IR)=K<\infty$, [/mm] dann folgt aus Konvergenz fast überall auch Konvergenz dem Maße nach. Also nutz aus, daß Du Zeug in Richtung Unendlichkeit abschieben kannst.


>Was ist mit f(x)=1 für $ [mm] x\in\IQ [/mm] $ und f(x)=0 sonst?

Wie sieht dann [mm] $\{x\in\IR||f_{n}(x)-f(x)|>\varepsilon\}$ [/mm] aus?

ciao
Stefan


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de