www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - Folgenraum l^2 und Teilraum
Folgenraum l^2 und Teilraum < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folgenraum l^2 und Teilraum: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 11:28 Sa 17.04.2010
Autor: Baumkind

Aufgabe
Ich soll zeigen, dass
$ [mm] W=\{ (a_1,a_2,...)\in l^2 (\IR) | \sum_{i=1}^{\infty} \frac{1}{2^i}a_i=0\}$ [/mm]
ein abgeschlossener linearer Teilraum von $ [mm] l^2(\IR)$ [/mm] ist.

Also, ich wollte so vorgehen, dass ich zeige, dass der Grenzwert jeder konvergenten Folge wieder in W liegt:
Dazu betrachte ich die konvergente Folge [mm] $(w^k)_{k\in N}$ [/mm] mit
[mm] $lim_{k\to \infty} w^k=w$. [/mm]
Nun muss gezeigt werden, dass daraus  [mm] $\sum_{i=1}^{\infty} \frac{1}{2^i}w_i=0$ [/mm] folgt.
Stimmt das soweit erst mal?
Lg

        
Bezug
Folgenraum l^2 und Teilraum: Antwort
Status: (Antwort) fertig Status 
Datum: 12:26 Sa 17.04.2010
Autor: Merle23

Richtig; hast nur vergessen hinzuschreiben, das die [mm] w^k [/mm] alle in W liegen sollen.

LG, Alex

Bezug
                
Bezug
Folgenraum l^2 und Teilraum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:57 Sa 17.04.2010
Autor: Baumkind

Schon mal danke für die Antwort. Weiter habe ich mir folgendes überlegt.
$ [mm] lim_{n\to \infty} \sum_{i=1}^{\infty} \frac{1}{2^i}w_i^n= lim_{n\to \infty} lim_{k\to \infty} \sum_{i=1}^{k} \frac{1}{2^i}w_i^n= lim_{k\to \infty} lim_{n\to \infty}\sum_{i=1}^{k} \frac{1}{2^i}w_i^n= lim_{k\to \infty} \sum_{i=1}^{k} \frac{1}{2^i}lim_{n\to \infty}w_i^n=\sum_{i=1}^{\infty} \frac{1}{2^i}w_i=0$ [/mm]
Ich betrachte am Anfang die Reihe und lasse die Folge gegen unendlich laufen. Weil die Folge für alle n konvergent ist, vertausche ich die Grenzwerte und ziehe den Grenzwert der Folge in die Summe.


Bezug
                        
Bezug
Folgenraum l^2 und Teilraum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:13 Sa 17.04.2010
Autor: Merle23

Zum Einen hast du nicht begründet, warum du die beiden Limiten vertauschen darfst ("weil die Folge konvergiert" ist hier kein Argument!) und zum Anderen ist die Konvergenz von Folgen in [mm] l^2 [/mm] anders definiert (also -nicht- punktweise!).

LG, Alex

Bezug
                                
Bezug
Folgenraum l^2 und Teilraum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:28 Sa 17.04.2010
Autor: Baumkind

Eine Folge in [mm] l^2 [/mm] konvegiert ja, wenn
[mm] $lim_{n\to \infty} ||w_n-w||=lim_{n\to \infty} \sum_{i=1}^{\infty} |w_i^n-w_i|^2 [/mm] =0 $

Leider weiß ich nicht, wie ich das hier einbringen soll.


Bezug
                                        
Bezug
Folgenraum l^2 und Teilraum: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:21 Sa 17.04.2010
Autor: Baumkind

Hat keiner eine Idee?

Bezug
                                                
Bezug
Folgenraum l^2 und Teilraum: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Mo 19.04.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Folgenraum l^2 und Teilraum: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Mo 19.04.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de