www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Folgerung Jensen Ungleichung
Folgerung Jensen Ungleichung < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folgerung Jensen Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:17 Sa 26.04.2014
Autor: kullinarisch

Aufgabe
f: [0,1] [mm] \to \IR [/mm]
[mm] \phi: \IR \to \IR+ [/mm] konvexe Funktion

Zeige: [mm] \phi(\integral_{0}^{1}{f(x) dx}) \le \integral_{0}^{1}{\phi(f(x) dx} [/mm]

Hallo zusammen.

Es gilt:

[mm] \summe_{k=1}^{n} \bruch{1}{n}f( \bruch{k}{n}) \to \integral_{0}^{1}{f(x) dx} [/mm] für n [mm] \to \infty [/mm]

[mm] \summe_{k=1}^{n} \bruch{1}{n}\phi(f( \bruch{k}{n})) \to \integral_{0}^{1}{\phi(f(x)) dx}) [/mm] für n [mm] \to \infty [/mm]

Da [mm] \phi [/mm] konxex ist folgt mit der Konstruktion der Summe und der Jensen Ungleichung

[mm] \phi(\summe_{k=1}^{n} \bruch{1}{n}f( \bruch{k}{n})) \le \summe_{k=1}^{n} \bruch{1}{n}\phi(f( \bruch{k}{n})) [/mm]

Problem: Mich interessiert ja der Grenzwert links und rechts der Ungleichung. Aber einfach auf beiden Seiten den [mm] \limes_{n\rightarrow\infty} [/mm] drauf packen geht doch nicht so einfach oder?

Gruß kulli

        
Bezug
Folgerung Jensen Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:17 Sa 26.04.2014
Autor: fred97


> f: [0,1] [mm]\to \IR[/mm]
>  [mm]\phi: \IR \to \IR+[/mm] konvexe Funktion
>  
> Zeige: [mm]\phi(\integral_{0}^{1}{f(x) dx}) \le \integral_{0}^{1}{\phi(f(x) dx}[/mm]
>  
> Hallo zusammen.
>  
> Es gilt:
>
> [mm]\summe_{k=1}^{n} \bruch{1}{n}f( \bruch{k}{n}) \to \integral_{0}^{1}{f(x) dx}[/mm]
> für n [mm]\to \infty[/mm]
>  
> [mm]\summe_{k=1}^{n} \bruch{1}{n}\phi(f( \bruch{k}{n})) \to \integral_{0}^{1}{\phi(f(x)) dx})[/mm]
> für n [mm]\to \infty[/mm]
>  
> Da [mm]\phi[/mm] konxex ist folgt mit der Konstruktion der Summe und
> der Jensen Ungleichung
>  
> [mm]\phi(\summe_{k=1}^{n} \bruch{1}{n}f( \bruch{k}{n})) \le \summe_{k=1}^{n} \bruch{1}{n}\phi(f( \bruch{k}{n}))[/mm]
>  
> Problem: Mich interessiert ja der Grenzwert links und
> rechts der Ungleichung. Aber einfach auf beiden Seiten den
> [mm]\limes_{n\rightarrow\infty}[/mm] drauf packen geht doch nicht so
> einfach oder?


Ohne weitere Voraussetzungen an f und [mm] \phi [/mm] geht das nicht so einfach. Hast Du weitere Voraussetzungen an f und (oder) [mm] \phi [/mm] verschwiegen ?

f sollte mindestens Riemannintegrierbar sein, ebenso [mm] \phi \circ [/mm] f. Ist [mm] \phi [/mm] als stetig vorausgesetzt ?

FRED

>  
> Gruß kulli  


Bezug
                
Bezug
Folgerung Jensen Ungleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:35 Sa 26.04.2014
Autor: kullinarisch


> > f: [0,1] [mm]\to \IR[/mm]
>  >  [mm]\phi: \IR \to \IR+[/mm] konvexe Funktion
>  >  
> > Zeige: [mm]\phi(\integral_{0}^{1}{f(x) dx}) \le \integral_{0}^{1}{\phi(f(x) dx}[/mm]
>  
> >  

> > Hallo zusammen.
>  >  
> > Es gilt:
> >
> > [mm]\summe_{k=1}^{n} \bruch{1}{n}f( \bruch{k}{n}) \to \integral_{0}^{1}{f(x) dx}[/mm]
> > für n [mm]\to \infty[/mm]
>  >  
> > [mm]\summe_{k=1}^{n} \bruch{1}{n}\phi(f( \bruch{k}{n})) \to \integral_{0}^{1}{\phi(f(x)) dx})[/mm]
> > für n [mm]\to \infty[/mm]
>  >  
> > Da [mm]\phi[/mm] konxex ist folgt mit der Konstruktion der Summe und
> > der Jensen Ungleichung
>  >  
> > [mm]\phi(\summe_{k=1}^{n} \bruch{1}{n}f( \bruch{k}{n})) \le \summe_{k=1}^{n} \bruch{1}{n}\phi(f( \bruch{k}{n}))[/mm]
>  
> >  

> > Problem: Mich interessiert ja der Grenzwert links und
> > rechts der Ungleichung. Aber einfach auf beiden Seiten den
> > [mm]\limes_{n\rightarrow\infty}[/mm] drauf packen geht doch nicht so
> > einfach oder?
>  
>
> Ohne weitere Voraussetzungen an f und [mm]\phi[/mm] geht das nicht
> so einfach. Hast Du weitere Voraussetzungen an f und (oder)
> [mm]\phi[/mm] verschwiegen ?
>  
> f sollte mindestens Riemannintegrierbar sein, ebenso [mm]\phi \circ[/mm]
> f. Ist [mm]\phi[/mm] als stetig vorausgesetzt ?
>  
> FRED
>  >  
> > Gruß kulli  
>  

Hi, ja hätte ich erwähnen sollen:
f und [mm] \phi [/mm] sind R- integrierbar und beide stetig! Das die Summen oben gegen die entsprechenden Integrale konvergieren ist eine Folgerung daraus.

Bezug
                
Bezug
Folgerung Jensen Ungleichung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 10:51 So 27.04.2014
Autor: kullinarisch


> > f: [0,1] [mm]\to \IR[/mm]
>  >  [mm]\phi: \IR \to \IR+[/mm] konvexe Funktion
>  >  
> > Zeige: [mm]\phi(\integral_{0}^{1}{f(x) dx}) \le \integral_{0}^{1}{\phi(f(x) dx}[/mm]
>  
> >  

> > Hallo zusammen.
>  >  
> > Es gilt:
> >
> > [mm]\summe_{k=1}^{n} \bruch{1}{n}f( \bruch{k}{n}) \to \integral_{0}^{1}{f(x) dx}[/mm]
> > für n [mm]\to \infty[/mm]
>  >  
> > [mm]\summe_{k=1}^{n} \bruch{1}{n}\phi(f( \bruch{k}{n})) \to \integral_{0}^{1}{\phi(f(x)) dx})[/mm]
> > für n [mm]\to \infty[/mm]
>  >  
> > Da [mm]\phi[/mm] konxex ist folgt mit der Konstruktion der Summe und
> > der Jensen Ungleichung
>  >  
> > [mm]\phi(\summe_{k=1}^{n} \bruch{1}{n}f( \bruch{k}{n})) \le \summe_{k=1}^{n} \bruch{1}{n}\phi(f( \bruch{k}{n}))[/mm]
>  
> >  

> > Problem: Mich interessiert ja der Grenzwert links und
> > rechts der Ungleichung. Aber einfach auf beiden Seiten den
> > [mm]\limes_{n\rightarrow\infty}[/mm] drauf packen geht doch nicht so
> > einfach oder?
>  
>
> Ohne weitere Voraussetzungen an f und [mm]\phi[/mm] geht das nicht
> so einfach. Hast Du weitere Voraussetzungen an f und (oder)
> [mm]\phi[/mm] verschwiegen ?
>  
> f sollte mindestens Riemannintegrierbar sein, ebenso [mm]\phi \circ[/mm]
> f. Ist [mm]\phi[/mm] als stetig vorausgesetzt ?
>  
> FRED
>  >  
> > Gruß kulli  
>  

>>


Moin, so habe die Frage nochmal überarbeitet.

Habe jetzt eine Idee wie es funktionieren könnte. Wäre cool wenn das jemand bestätigen, oder zumindest irgend einen kritischen Senf, Bedenken oder sonst was abgeben könnte!



Vorausgesetzt: f, [mm] \phi [/mm] und [mm] \phi\circ [/mm] f sind Riemann- integrierbar. Das bedeutet ich kann mir eine spezielle Zerlegungsfolge [mm] Z_j [/mm] von [0,1] mit speziellem Zwischenvektor [mm] \xi_j [/mm] wählen. Ich wähle (Achtung Harro Heuser Notation):

[mm] Z_j [/mm] := [mm] x_0^{(j)}, x_1^{(j)}, [/mm] ..., [mm] x_{nj}^{(j)} [/mm] mit [mm] |x_k^{(j)}-x_{k-1}^{(j)}| [/mm] = [mm] \bruch{1}{nj} \to [/mm] 0 für j [mm] \to \infty [/mm]

[mm] \xi_j [/mm] := [mm] (\xi_1^{(j)}, \xi_2^{(j)}, [/mm] ..., [mm] \xi_{nj}^{(j)}) [/mm] mit [mm] \xi_k^{(j)} \in I_k^{j} [/mm] := [mm] [x_{k-1}^{(j)}, x_k^{(j)}] [/mm]

Das besondere an [mm] \xi_k^{(j)}: [/mm] Es soll gelten Inf( [mm] \phi|_{f(I_k^{j})}) [/mm] = [mm] \phi(f(\xi_k^{(j)})) [/mm]  (Infimum von [mm] \phi [/mm] eingeschränkt auf das Bild [mm] f(I_k^{j})) [/mm]






Dann gilt:


[mm] \phi(\summe_{k=1}^{nj}\bruch{1}{nj}f(\xi_k^{(j)}))\le \summe_{k=1}^{nj}\bruch{1}{nj}\phi(f(\xi_k^{(j)})) [/mm] = [mm] \summe_{k=1}^{nj}\bruch{1}{nj} [/mm] Inf( [mm] \phi|_{f(I_k^{j})}) [/mm]

Das erste [mm] "\le" [/mm] Zeichen gilt wegen der Jensen Ungleichung.
Nach Konstruktion habe ich jetzt auf der rechten Seite eine monoton wachsende Folge (nämlich die Folge der Untersummen von [mm] \phi, [/mm] die [mm] \integral_{0}^{1}{\phi(f(x)) dx} [/mm] auf [0,1] approximieren). Also kann ich (?) auf der rechten Seite j [mm] \to \infty [/mm] laufen lassen und erhalte [mm] \summe_{k=1}^{nj}\bruch{1}{nj} [/mm] Inf( [mm] \phi|_{f(I_k^{j})}) [/mm] = [mm] \integral_{0}^{1}{\phi(f(x) dx}. [/mm]







Kurz:


[mm] \phi(\summe_{k=1}^{nj}\bruch{1}{nj}f(\xi_k^{(j)}))\le \integral_{0}^{1}{\phi(f(x) dx} [/mm]

Kann ich jetzt auch auf der linken Seite j [mm] \to \infty [/mm] laufen lassen? Denn ich habe ja auf der rechten Seite eine feste Zahl als Schranke.

Gruß kulli

Bezug
                        
Bezug
Folgerung Jensen Ungleichung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:20 Di 29.04.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de