www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Formel - Integralberechnung
Formel - Integralberechnung < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Formel - Integralberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:25 Sa 19.01.2013
Autor: meg

Aufgabe
Hallo zusammen,

als Hinweis für die Berechnung eines Integrals hat mein Prof folgende Formel aufgeschrieben: $ [mm] \frac{\phi `(v)}{\phi(v)} [/mm] = -v$

Weiß jemand, ob es eine bestimmte Bezeichnung für diese Formel gibt? Ich kann leider die Formel weder im Internet noch im Skript finden...

VG
meg

        
Bezug
Formel - Integralberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:00 Sa 19.01.2013
Autor: Sax

Hi,

deine "Formel" ist keine allgemeingültige Beziehung, deshalb wirst du sie auch in keiner Formelsammlung finden. Sie stellt vielmehr eine Beziehung zwischen [mm] \phi [/mm] und [mm] \phi' [/mm] dar, die für gewisse Funktionen [mm] \phi [/mm] erfüllt ist (und für andere nicht).

Ich vermute, dass es um Folgendes geht :
Es soll etwa das Integral  [mm] \integral{v*e^{- \bruch{1}{2}v^2}dv} [/mm]  berechnet werden.
Dann führt die Substitution [mm] \phi(v)=e^{- \bruch{1}{2}v^2} [/mm] wegen der Gültigkeit deiner "Formel" für diese Funktion [mm] \phi [/mm] (nachrechnen !) auf ein Integral der Form [mm] \integral{\phi'(v) dv} [/mm] ,  was du leicht mit dem Hauptsatz lösen kannst.

Gruß Sax.

Bezug
                
Bezug
Formel - Integralberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:00 Sa 19.01.2013
Autor: meg

Ganz genau, es handelt sich um die Exponentialfunktion. :) Vielen Dank für die Antworten. Ich verstehe es jetzt und habe nachgerechnet:

$ [mm] \frac{(\frac{1}{2 \pi} e^{ \frac{-v^2}{2} })'}{\frac{1}{2 \pi} e^{ \frac{-v^2}{2} }} [/mm] =  [mm] \frac{-v \frac{1}{2 \pi} e^{ \frac{-v^2}{2} }}{\frac{1}{2 \pi} e^{ \frac{-v^2}{2} }} [/mm] = -v$

Und das Integral ist dann einfach:
$ [mm] \integral{\phi'(v) dv} [/mm] =  [mm] \phi(v) [/mm] $

Gruß
meg

Bezug
                        
Bezug
Formel - Integralberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:06 Sa 19.01.2013
Autor: Sax

Hi,

vergiss das Minuszeichen nicht.

Gruß Sax.

Bezug
                                
Bezug
Formel - Integralberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:12 Sa 19.01.2013
Autor: meg

Ja, stimmt. Lieben Dank !!!

Gruß
meg

Bezug
        
Bezug
Formel - Integralberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:02 Sa 19.01.2013
Autor: notinX

Hallo,

das ist eine lineare, gewöhnliche Differentialgleichung erster Ordnung.

Gruß,

notinX

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de