www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Formel von Cardano: weshalb genau diese Substitution
Formel von Cardano: weshalb genau diese Substitution < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Formel von Cardano: weshalb genau diese Substitution: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:49 Mo 23.08.2004
Autor: sonne

Hey,
also leider finde ich in keinem Mathebuch o. ä. eine Erklärung dafür, weshalb bei einer allg. Gleichung 3. Grades genau die Substitution
x=y-a/3 hergenommen wird.
Was ist der Hintergrund??

Bzw. besteht evtl. ein Zusammenhang mit der Lösungsformel der quadratischen Funktion, da bei der reduzierten Form (der kubischen Gleichung) auch p und q vorkommt.

Vielen Dank schon mal.


Ich habe diese Frage in keinem weiteren Forum gestellt.

        
Bezug
Formel von Cardano: weshalb genau diese Substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 17:58 Mo 23.08.2004
Autor: Josef

Hallo sonne,

Die allgemeine Auflösung der normierten Form [mm] x^3+ax^2+bx+c [/mm] = 0 gelingt mit Hilfe der Substitution x = y-[mm]\bruch{a}{3}.[/mm].
Man erhält damit die reduzierte  Form [mm] y^3+py+q [/mm] = 0, in der das quadratische Glied nicht mehr auftritt. Dabei wurde der Kürze wegen p = b-[mm]\bruch{a^2}{3}[/mm] und q = [mm]\bruch{2a^3}{27}[/mm]-[mm]\bruch{ab}{3}[/mm]+c gesetzt.
Die Diskriminante D = ([mm]\bruch{q}{2}[/mm][mm] )^2 [/mm] +( [mm]\bruch{p}{3})^3[/mm] ist für den weiteren Rechengang von Bedeutung.

Bezug
        
Bezug
Formel von Cardano: weshalb genau diese Substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 00:00 Di 24.08.2004
Autor: Stefan

Hallo sonne!

[willkommenmr]

Also, es ist genau so, wie du es gesagt hast: Es gibt einen Zusammenhang zu der quadratischen Lösungsformel. In Josefs Antwort siehst du ja, dass durch die von dir genannte Substitution der quadratische Term wegfällt. Aber aus [mm] $y^3 [/mm] + ay + b=0$ und dem Ansatz $y=u+v$ kommt man sehr schnell auf eine quadratische Gleichung, deren Lösungsformel man explizit kennt. daraus kann man dann die Cardano'sche Formel herleiten.

Deine Intuition war also goldrichtig. [daumenhoch] [respekt]

Liebe Grüße
Stefan



Bezug
                
Bezug
Formel von Cardano: weshalb genau diese Substitution: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:05 Di 24.08.2004
Autor: Stefan

Hallo nochmal!

So, jetzt habe ich auch noch einen []Link zu der Geschichte gefunden, die ich dir gerade erzählt habe. ;-)

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de