Fortlaufende Proportionen < Klassen 8-10 < Schule < Mathe < Vorhilfe
|
Aufgabe | In den Aufgaben ist aus den beiden gegebenen Proportionen jeweils eine fortlaufende Proportion zu bilden.
Aufgabe 1
a) a:b=3:2 | b:c=2:5
b) a:b=2:1 | a:c=2:3
c) a:b=3:5 | b:c=10:7
d) a:b=2:3 | a:c=4:7
Aufgabe 2
a) a:b=7:3 | b:c=5:8
b) a:b=3:8 | c:b=2:11
c) a:b=1/3:1/4 | a:c=2:5
d) a:b=1/7:7/6 | c:b=3/4:3/2 |
Ich habe alle Aufgaben bearbeitet und leider ist nur die Aufgabe 1 a) korrekt :(
Anbei meine Lösungen und die die Lösungen aus dem Buch:
Zuerst nenne ich jeweils meine Lösung, dann die Lösung aus dem Buch, getrennt werden diese durch ein "|"-Zeichen.
Aufgabe 1
a) a:b:c=3:2:5 | a:b:c=3:2:5 (meine Lösung stimmt überein)
b) a:b:c=2:1:3,5 | a:b:c=2:1:3 (meine Lösung ist nicht korrekt)
c) a:b:c=3:5:3,5 | a:b:c=6:10:7 (meine Lösung ist nicht korrekt)
d) a:b:c=2:3:3,5 | a:b:c=4:6:7 (meine Lösung ist nicht korrekt)
Aufgabe 2
a) a:b:c=35:15:56 | a:b:c=35:15:24 (meine Lösung ist nicht korrekt)
b) a:b:c=33:88:6 | a:b:c=33:88:16 (meine Lösung ist nicht korrekt)
c) a:b:c=2/3:1/2:5/3 | a:b:c=4:3:10 (meine Lösung ist nicht korrekt)
d) a:b:c=1/2:7/4:3/4 | a:b:c=4:14:7 (meine Lösung ist nicht korrekt)
Kann mir hier einer helfen und mir es erklären bzw. Denkanstöße und Tipps geben?
Vielen Dank im voraus!
|
|
|
|
> In den Aufgaben ist aus den beiden gegebenen Proportionen
> jeweils eine fortlaufende Proportion zu bilden.
>
> Aufgabe 1
>
> a) a:b=3:2 | b:c=2:5
> b) a:b=2:1 | a:c=2:3
> c) a:b=3:5 | b:c=10:7
> d) a:b=2:3 | a:c=4:7
>
> Aufgabe 2
>
> a) a:b=7:3 | b:c=5:8
> b) a:b=3:8 | c:b=2:11
> c) a:b=1/3:1/4 | a:c=2:5
> d) a:b=1/7:7/6 | c:b=3/4:3/2
> Ich habe alle Aufgaben bearbeitet und leider ist nur die
> Aufgabe 1 a) korrekt :(
>
> Anbei meine Lösungen und die die Lösungen aus dem Buch:
>
> Zuerst nenne ich jeweils meine Lösung, dann die Lösung
> aus dem Buch, getrennt werden diese durch ein "|"-Zeichen.
>
> Aufgabe 1
>
> a) a:b:c=3:2:5 | a:b:c=3:2:5 (meine Lösung stimmt
> überein)
> b) a:b:c=2:1:3,5 | a:b:c=2:1:3 (meine Lösung ist nicht
> korrekt)
> c) a:b:c=3:5:3,5 | a:b:c=6:10:7 (meine Lösung ist nicht
> korrekt)
> d) a:b:c=2:3:3,5 | a:b:c=4:6:7 (meine Lösung ist nicht
> korrekt)
>
> Aufgabe 2
>
> a) a:b:c=35:15:56 | a:b:c=35:15:24 (meine Lösung ist nicht
> korrekt)
> b) a:b:c=33:88:6 | a:b:c=33:88:16 (meine Lösung ist
> nicht korrekt)
> c) a:b:c=2/3:1/2:5/3 | a:b:c=4:3:10 (meine Lösung ist
> nicht korrekt)
> d) a:b:c=1/2:7/4:3/4 | a:b:c=4:14:7 (meine Lösung ist
> nicht korrekt)
>
> Kann mir hier einer helfen und mir es erklären bzw.
> Denkanstöße und Tipps geben?
>
> Vielen Dank im voraus!
Hallo gummibaum,
ich vermute, dass es wohl bei allen Aufgaben in etwa um
dasselbe grundsätzliche Problem geht, wie man da über-
haupt vorgehen soll.
Übrigens sind nicht alle deine Lösungen wirklich falsch,
welche nicht exakt mit den "Musterlösungen" übereinstimmen.
Ein Beispiel dazu:
Bei Aufgabe 1c bist du auf die Lösung
a:b:c = 3:5:3,5
gekommen, und als "richtige" Lösung gibst du an:
a:b:c = 6:10:7
Es wäre wichtig, dass du siehst, dass diese beiden
Lösungen äquivalent sind ! Die zweite hat nur noch
die besondere Eigenschaft, dass alle 3 darin vorkommenden
Zahlenwerte ganzzahlig (und dazu noch teilerfremd)
sind. Falls du aber einmal zu einer solchen Aufgabe
überhaupt eine Lösung (auch mit Brüchen) hast, kannst
du sie stets auch noch auf die präsentablere Form mit
teilerfremden ganzen Zahlen bringen.
Picken wir nun einfach mal noch ein Beispiel heraus,
etwa die Aufgabe 2c:
c) a:b = 1/3:1/4 | a:c = 2:5
Bringen wir zuerst die erste Proportion auf eine Form,
in der nur ganze Zahlen auftreten:
Erweitern mit dem gemeinsamen Nenner 12 ergibt:
[mm] $\frac{a}{b}\ [/mm] =\ [mm] \frac{12*a}{12*b}\ [/mm] =\ [mm] \frac{12*\frac{1}{3}}{12*\frac{1}{4}}\ [/mm] =\ [mm] \frac{4}{3}$
[/mm]
Auf der Zeile notiert heißt dies:
a:b = 4:3
Dazu haben wir noch die zweite Proportionsgleichung:
a:c = 2:5
Um diese beiden Proportionen zu einer fortlaufenden zu
verbinden, betrachten wir jetzt die gemeinsame Variable
der beiden Gleichungen. Das ist in diesem Beispiel das a.
In der ersten Gleichung steht a:b = 4: ....
in der zweiten Gleichung a:c = 2: ....
Um die beiden Gleichungen miteinander zu "verkleben",
müssen wir dafür sorgen, dass an der Stelle der fetten
Zahl beidemal dieselbe Zahl steht. Dies können wir
hier sofort erreichen, indem wir ein gemeinsames
Vielfaches von 4 und 2 nehmen, am besten
das kleinste, also kgV(4,2)=4 .
Erweitern wir also die zweite Proportion a:c = 2:5
mit dem Erweiterungsfaktor 2 zu:
a:c = 4:10
Schließlich wird nun aus den beiden Gleichungen
a:b = 4:3 und a:c = 4:10
die fortlaufende Proportionsgleichung:
a:b:c = 4:3:10
LG
Al-Chwarizmi
|
|
|
|