www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Numerik" - Fourier-Matrix
Fourier-Matrix < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fourier-Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:20 So 10.07.2016
Autor: Mathe-Lily

Hallo!

Ich habe gelesen, dass die Fourier-Matrix [mm] T_n = (w^0,...,w^{n-1}) \in \IC^{nxn} [/mm] mit [mm] w^k = (w_n^{0k},...,w_n^{(n-1)k})^T [/mm] mit [mm] w_n=e^{i2 \pi / n} [/mm] nur n verschiedene Einträge hat, die in zyklischer Art angeordnet sind, weshalb die Multiplikation einen geringeren Aufwand hat als [mm] O(n^2). [/mm]

Ich bin direkt mal über die "n verschiedenen Einträge" gestolpert. Ich bin darauf gekommen, dass [mm] T_n [/mm] symmetrisch ist, wodurch es statt [mm] n^2 [/mm] verschiedenen Einträgen nur n! verschiedene Einträge sind. Hier muss wohl die zyklische Anordnung noch eine Verringerung hervorrufen, aber das sagt mir nichts. Kann mir jemand weiter helfen?

Liebe Grüße, Lily

        
Bezug
Fourier-Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 13:50 So 10.07.2016
Autor: fred97

ich denke, dass es deine Einsicht beträchtlich erhöht,wenn du dir die Fälle n=2 und n=3 vornimmst. das sollte dann auch den allgemeinen Fall klären

fred

Bezug
                
Bezug
Fourier-Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:27 So 10.07.2016
Autor: Mathe-Lily

Hallo!

Das habe ich schon gemacht. Dabei kommt raus:

[mm] T_2= \pmat{ w_2^0 & w_2^0 \\ w_2^0 & w_2^1 } [/mm] Hier sieht man: [mm] T_2 [/mm] ist symmetrisch und es kommen n=2 verschiedene Einträge vor

[mm] T_3= \pmat{ w_3^0 & w_3^0 &w_3^0 \\ w_3^0 & w_3^1 & w_3^2 \\ w_3^0 & w_3^2 & w_3^4 } [/mm] Hier ist das nicht mehr so eindeutig: [mm] T_3 [/mm] ist zwar symmetrisch, aber es gibt 4 verschiedene Einträge. Außer (könnte das sein?), wenn man [mm] w_3^k = w_3^{k mod 3} [/mm] setzt... dann wäre [mm] w_3^4=w_3^1 [/mm] und es würde wieder stimmen. Ist das mit der "zyklischen Art" gemeint?
Dann wäre es ja klar: es kann nur [mm] w_n^k [/mm] mit k [mm] \in [/mm] {0,...,n-1} geben und damit sind es genau n Einträge... ?

Liebe Grüße,
Lily

Bezug
                        
Bezug
Fourier-Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 15:31 So 10.07.2016
Autor: fred97


> Hallo!
>  
> Das habe ich schon gemacht. Dabei kommt raus:
>  
> [mm]T_2= \pmat{ w_2^0 & w_2^0 \\ w_2^0 & w_2^1 }[/mm] Hier sieht
> man: [mm]T_2[/mm] ist symmetrisch und es kommen n=2 verschiedene
> Einträge vor
>  
> [mm]T_3= \pmat{ w_3^0 & w_3^0 &w_3^0 \\ w_3^0 & w_3^1 & w_3^2 \\ w_3^0 & w_3^2 & w_3^4 }[/mm]
> Hier ist das nicht mehr so eindeutig: [mm]T_3[/mm] ist zwar
> symmetrisch, aber es gibt 4 verschiedene Einträge. Außer
> (könnte das sein?), wenn man [mm]w_3^k = w_3^{k mod 3}[/mm]
> setzt... dann wäre [mm]w_3^4=w_3^1[/mm]

so ist es.


> und es würde wieder
> stimmen. Ist das mit der "zyklischen Art" gemeint?

ja


>  Dann wäre es ja klar: es kann nur [mm]w_n^k[/mm] mit k [mm]\in[/mm]
> {0,...,n-1} geben und damit sind es genau n Einträge... ?

ja

fred


>  
> Liebe Grüße,
>  Lily


Bezug
                                
Bezug
Fourier-Matrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:38 So 10.07.2016
Autor: Mathe-Lily

Aha! Danke :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de