www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Fourier Anfänger
Fourier Anfänger < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fourier Anfänger: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:07 Mo 05.11.2012
Autor: lzaman


Hallo zusammen, ich versuche gerade die Fourierreihen zu begreifen. Leider haperts schon an der ersten algemeinen Form:


[mm]f(t)=\dfrac{a_0}{2}+\summe_{k=1}^{\infty}(a_k\cdot cos(k\omega t)+b_k\cdot sin(k\omega t)) [/mm]

Und zwar geht es mir hauptsächlich um den Koeffizienten [mm] \dfrac{a_0}{2}, [/mm] wie kommt man auf diesen oder ist das einfach eine Formel, die man sich als Definition merken sollte? Habe dazu leider auch nichts gefunden ausser dass es der Gleichanteil dieser Reihe ist. Kann man sich das irgendwie aus den Additionstheoremen herleiten?

Danke


        
Bezug
Fourier Anfänger: Antwort
Status: (Antwort) fertig Status 
Datum: 23:36 Mo 05.11.2012
Autor: Marcel

Hallo,

>
> Hallo zusammen, ich versuche gerade die Fourierreihen zu
> begreifen. Leider haperts schon an der ersten algemeinen
> Form:
>  
>
> [mm]f(t)=\dfrac{a_0}{2}+\summe_{k=1}^{\infty}(a_k\cdot cos(k\omega t)+b_k\cdot sin(k\omega t))[/mm]
>  
> Und zwar geht es mir hauptsächlich um den Koeffizienten
> [mm]\dfrac{a_0}{2},[/mm] wie kommt man auf diesen oder ist das
> einfach eine Formel, die man sich als Definition merken
> sollte? Habe dazu leider auch nichts gefunden ausser dass
> es der Gleichanteil dieser Reihe ist. Kann man sich das
> irgendwie aus den Additionstheoremen herleiten?

das ist eine []Definition (trigonometrische Reihe!) - was willst Du da herleiten? Oder willst Du
- für "passende [mm] $f\,$ [/mm] - deren Fourierreihendarstellung "motiviert" haben?
(Für "gewisse [mm] $f\,$" [/mm] kann man ja die [mm] $a_k,b_k$ [/mm] dann "explizit berechnen"
- wenn "die mit [mm] $f\,$ [/mm] gebildete Fourierreihe" auch 'etwas mit [mm] $f\,$ [/mm] zu tun
haben soll'...)

(Du kannst auch []hier (klick!) ein wenig lesen!)

Gruß,
  Marcel

Bezug
                
Bezug
Fourier Anfänger: Anwort
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:40 Mo 05.11.2012
Autor: lzaman

Danke, dass du mir es nochmal bestätigst. In unserem Skript steht das nicht als Definiton sondern taucht ziwschen den ersten Sätzen nur so auf. Ich habe mir es selbst schwieriger gemacht als es ist.


Bezug
                        
Bezug
Fourier Anfänger: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:50 Mo 05.11.2012
Autor: Marcel

Hallo,

> Danke, dass du mir es nochmal bestätigst. In unserem
> Skript steht das nicht als Definiton sondern taucht
> ziwschen den ersten Sätzen nur so auf. Ich habe mir es
> selbst schwieriger gemacht als es ist.

ist es denn jetzt klar? Die Gleichung
[mm] $$f(t)=a_0/2+\sum_{...}^{...}... \text{ (siehe Deine Ausgangsfrage)}$$ [/mm]
besagt eigentlich so erstmal nur: [mm] $f\,$ [/mm] ist eine trigonometrische Reihe!
(Oder [mm] $f\,$ [/mm] liegt in der Darstellung einer trigonometrischen Reihe vor...
oder wie immer man das auch ausdrücken will!)

Gruß,
  Marcel  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de