www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Fourierkoeffizienten
Fourierkoeffizienten < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fourierkoeffizienten: der Fourierreihe
Status: (Frage) beantwortet Status 
Datum: 20:20 Do 18.12.2008
Autor: brichun

Hallo zusammen,

bei der Berechnung der Koeffizienten muss man zum Schluss den Koeffizientenwert für verschiedene n (n ist der Laufindex) Prüfen.
Also für gerade n und für ungerade n.

Ich verstehe nicht wie mein Prof bei diesem Prüfen immer gerade Zahlenwerte da rauslesen kann.

Bsp1.:


[mm]b= \bruch{1}{\pi}* \int_{0}^{2\pi} x \sin(n x)\, dx[/mm]

[mm]b= \bruch{1}{\pi}[-\bruch{x \cos(nx)}{n} + \bruch{\sin(nx)}{n^2}][/mm]

in den Grenzen von 0 - 2Pi
sorry weiss nicht wie ich das eingeben soll

Hier ist es noch einfach da sieht man das der rechte Teil sowohl für 0 als auch für 2Pi immer Null ist.
Beim Linken Teil ist es auch nicht viel schwerer da [mm]\cos(0)=1[/mm] und
[mm]\cos(n2\pi)=1[/mm]

[mm]b= -\bruch{2}{n}[/mm]


Bsp2.:

[mm]b= \bruch{2}{3}* \int_{0}^{1} x \sin(n \omega x)\, dx[/mm]

für [mm] \omega = \bruch{2\pi}{3}[/mm]

[mm]b=\bruch{2}{\pi} [ 3*\bruch{\sin(n \bruch{2\pi}{3} x)}{n^2 * 2\pi}-\bruch{x \cos(n \bruch{2\pi}{3} x)}{n}][/mm]

in den Grenzen von 0 bis 1

Da steht dann in seiner Lösung folgendes:

[mm] b=\left\{\begin{matrix} \bruch{1}{\pi n}+\bruch{3\wurzel{3}}{2\pi^2 n^2}, & \mbox{für }n =\mbox{ 1,4,7,...} \\ \bruch{1}{\pi n}-\bruch{3\wurzel{3}}{2\pi^2 n^2}, & \mbox{für }n=\mbox{ 2,5,8,...}\\ -\bruch{2}{\pi n}, & \mbox{für }n=\mbox{ 3,6,9,...} \end{matrix}\right. [/mm]

So kann man sowas ohne Taschenrechner rausbekommen?
Wenn ich das in den Taschenrechner gebe kommt eine Dezimalzahl raus diese Stimmt aber mit der Lösung überein.

Wie zum Teufel kommt der auf diese [mm] 3\wurzel{3}? [/mm] :)

Ich hoffe ihr versteht was ich mein
vielen dank

Gruß
Brichun

        
Bezug
Fourierkoeffizienten: Antwort
Status: (Antwort) fertig Status 
Datum: 20:27 Do 18.12.2008
Autor: Marcel08

Hallo Brichun!



In Formelsammlungen gibt es meistens Tabellen, in denen häufig vorkommende Werte der trigonometrischen Funktionen bei bestimmten Bogenmaßen, bzw. Gradzahlen abgelesen werden können.


In einer solchen Tabelle findest du dann beispielsweise auch den Faktor [mm] \bruch{\wurzel{3}}{3}\gdw\bruch{1}{\wurzel{3}}, [/mm] Gruß,





Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de