www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Fourier-Transformation" - Fourierreihe
Fourierreihe < Fourier-Transformati < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fourierreihe: Funktionsterm gesucht!
Status: (Frage) beantwortet Status 
Datum: 14:03 So 28.06.2015
Autor: fse

Aufgabe
[mm] f(t)=\summe_{n=0}^{\infty}(-1)^n \bruch{cos(nt)}{2^n} [/mm]
Offensichtlich ist die Periode 2𝜋. Geben Sie [mm] a_n [/mm] und [mm] b_n [/mm] für n≥0 an
Geben Sie einen geschlossenen Ausdruck (Funktionsterm) für f an.
Hinweis: Nutzen Sie den komplexen Koeffizient [mm] c_n [/mm] und die Formel für die geometrische Reihe


Hallo,
stimmt die folgende Rechnung? (zumindest vom Ansatz her?) oder mach ich da volkommenen mißt?;-)
[mm] a_n [/mm] = [mm] \bruch{(-1)^n}{2^n} [/mm]

[mm] b_n [/mm] =0

[mm] c_n =\bruch{1}{2} (\bruch{-1^n}{2^n})=\bruch{1}{2} (\bruch{-1}{2})^n [/mm]


[mm] f(t)=\summe_{k=-\infty}^{\infty} c_n *e^{jn\omega t} [/mm]

Geometrische Reihe:
[mm] f(t)=\summe_{k=1}^{n} [/mm] a [mm] q^{k}= a\bruch {q^{n+1}-1}{q-1} [/mm]
muss das a vor der Summenformel stehen oder ist es so auch richtig?



[mm] =\bruch{1}{2}*\bruch {(0,5*e^{j\omega t})^{n+1}-1}{0,5*e^{j\omega t}-1} [/mm]

Grüße fse


        
Bezug
Fourierreihe: kein Tipp?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:20 Di 30.06.2015
Autor: fse

Hat niemand einen Tipp? Bin noch an Antworten interessiert!

Grüße fse

Bezug
        
Bezug
Fourierreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 10:59 Di 30.06.2015
Autor: M.Rex

Hallo
> [mm]f(t)=\summe_{n=0}^{\infty}(-1)^n \bruch{cos(nt)}{2^n}[/mm]

>

> Offensichtlich ist die Periode 2𝜋. Geben Sie [mm]a_n[/mm] und [mm]b_n[/mm]
> für n≥0 an

Was sind denn [mm] a_{n} [/mm] und [mm] b_{n} [/mm] in diesem Zusammenhang?

> Geben Sie einen geschlossenen Ausdruck (Funktionsterm)
> für f an.
> Hinweis: Nutzen Sie den komplexen Koeffizient [mm]c_n[/mm] und die
> Formel für die geometrische Reihe

>

> Hallo,
> stimmt die folgende Rechnung? (zumindest vom Ansatz her?)
> oder mach ich da volkommenen mißt?;-)
> [mm]a_n[/mm] = [mm]\bruch{(-1)^n}{2^n}[/mm]

>

> [mm]b_n[/mm] =0

>

> [mm]c_n =\bruch{1}{2} (\bruch{-1^n}{2^n})=\bruch{1}{2} (\bruch{-1}{2})^n[/mm]

Das kann ich nicht beurteilen, da ich nicht weiss, was [mm] a_{n} [/mm] und [mm] b_{n} [/mm] hier sein sollen.

>
>

> [mm]f(t)=\summe_{k=-\infty}^{\infty} c_n *e^{jn\omega t}[/mm]

>

> Geometrische Reihe:
> [mm]f(t)=\summe_{k=1}^{n}[/mm] a [mm]q^{k}= a\bruch {q^{n+1}-1}{q-1}[/mm]

>

> muss das a vor der Summenformel stehen oder ist es so auch
> richtig?

Bei der Summe kannst du das a ausklammern
[mm] \sum\limits_{k=1}^{n}aq^{k} [/mm]
[mm] =a\cdot\sum\limits_{k=1}^{n}q^{k} [/mm]
[mm] =a\cdot\frac{q^{n+1}-1}{q-1} [/mm]

Prüfe aber noch, ob die Voraussetzungen an diese Summe erfüllt sind.

>
>
>

> [mm]=\bruch{1}{2}*\bruch {(0,5*e^{j\omega t})^{n+1}-1}{0,5*e^{j\omega t}-1}[/mm]

>

> Grüße fse

>

Marius

Bezug
                
Bezug
Fourierreihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:56 Mi 01.07.2015
Autor: fse

<< Was sind denn $ [mm] a_{n} [/mm] $ und $ [mm] b_{n} [/mm] $ in diesem Zusammenhang?
[mm] a_n [/mm] und [mm] b_n [/mm] sind die Fourierkoeffizient

Grüße fse

Bezug
        
Bezug
Fourierreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 13:00 Di 30.06.2015
Autor: fred97

Es ist

[mm] f(t)=Re(\summe_{n=0}^{\infty}\bruch{(-1)^n}{2^n}e^{int})=Re(\summe_{n=0}^{\infty}(\bruch{-e^{it}}{2})^n=Re(\bruch{1}{1+\bruch{e^{it}}{2}}) [/mm]

Jetzt Du.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de