www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Fourierreihe
Fourierreihe < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fourierreihe: bezüglich eines Orthogonalsys.
Status: (Frage) beantwortet Status 
Datum: 14:30 Di 15.11.2011
Autor: Zeitlos

Aufgabe
Das auf [0, [mm] \pi] [/mm] definierte Funktionensystem
fn(x) = sin(nx)

bildet ein vollständiges Orthogonalsystem bezüglich des Skalarprodukts
<f,g> = [mm] \integral_{0}^{\pi}{f(x)*g(x) dx} [/mm]

Entwickeln sie die auf [0, [mm] \pi] [/mm] definierte (konstante) Funktion f(x)=17 in eine Fourrierreihe bezüglich dieses Orthogonalsystems.

An sich bin ich echt nicht so schlecht, was Fourrierreihe betrifft (ist ja auch ca immer dasselbe Schema..).. aber diese Angabe verstehe ich einfach nicht..

Das auf [0, [mm] \pi] [/mm] definierte Funktionensystem
fn(x) = sin(nx)

bildet ein vollständiges Orthogonalsystem bezüglich des Skalarprodukts
<f,g> = [mm] \integral_{0}^{\pi}{f(x)*g(x) dx} [/mm]

heißt für mich das zB
f(x) = sin(3x)
g(x) = sin(5x)
sind paarweise orthogonal...

aber was der Ausdruck "bezüglich des Orthogonalsystems als Fourriereihe entwickeln" bedeutet weiß ich nicht..

heißt, dass eventuell das die Funktion die ich entwickeln muss
f(x) = 17* sin(nx) ist ?!
nicht oder ?!

lg


        
Bezug
Fourierreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 14:54 Di 15.11.2011
Autor: donquijote


> Das auf [0, [mm]\pi][/mm] definierte Funktionensystem
> fn(x) = sin(nx)
>  
> bildet ein vollständiges Orthogonalsystem bezüglich des
> Skalarprodukts
> <f,g> = [mm]\integral_{0}^{\pi}{f(x)*g(x) dx}[/mm]
>  
> Entwickeln sie die auf [0, [mm]\pi][/mm] definierte (konstante)
> Funktion f(x)=17 in eine Fourrierreihe bezüglich dieses
> Orthogonalsystems.
>  An sich bin ich echt nicht so schlecht, was Fourrierreihe
> betrifft (ist ja auch ca immer dasselbe Schema..).. aber
> diese Angabe verstehe ich einfach nicht..
>  
> Das auf [0, [mm]\pi][/mm] definierte Funktionensystem
> fn(x) = sin(nx)
>  
> bildet ein vollständiges Orthogonalsystem bezüglich des
> Skalarprodukts
> <f,g> = [mm]\integral_{0}^{\pi}{f(x)*g(x) dx}[/mm]
>  
> heißt für mich das zB
>  f(x) = sin(3x)
>  g(x) = sin(5x)
> sind paarweise orthogonal...

und es ist zu zeigen, dass es sich um ein vollständiges Orthogonalsystem handelt,
d.h. jede Funktion aus dem betrachteten Funktionenraum (vermutlich [mm] L^2([0,\pi])) [/mm] ist Linearkombination der [mm] f_n [/mm] darstellbar ist.

>  
> aber was der Ausdruck "bezüglich des Orthogonalsystems als
> Fourriereihe entwickeln" bedeutet weiß ich nicht..
>  
> heißt, dass eventuell das die Funktion die ich entwickeln
> muss
>  f(x) = 17* sin(nx) ist ?!
>  nicht oder ?!

Gesucht ist eine Darstellung der konstanten Funktion 17 als Linearkombination der [mm] f_n, [/mm] also
17 = [mm] \sum_na_nsin(nx) [/mm]
Um diese Darstellung zu bekommen, kannst du z.B. die Fourier-Reihe der Funktion
g(x)=-17 für x<0 und g(x)=17 für [mm] x\ge [/mm] 0 auf dem Intervall [mm] [-\pi,\pi] [/mm] betrachten.

>  
> lg
>  


Bezug
                
Bezug
Fourierreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:08 Di 15.11.2011
Autor: Zeitlos

Also rechne ich quasi nur mit Sinuskomponenten..

normalerweise ist die Fourrierreihe ja
a0/2 + ak*sin(kx) + bk*cos(kx)
und in diesem Fall möchte ich f(x)=17 NUR als Linearkombination von sin(kx) darstellen, also lasse ich die bk*cos(kx) Terme einfach weg...  ?

Aber warum sollte ich f(x)= -17 setzen wenn ich doch die konstante Funktion f(x)=17 in eine Fourrierreihe verwandeln soll ?!
kann ich nicht einfach f(x)=17 auf dem konstanten Intervall [mm] [-\pi, \pi] [/mm] entwickeln?

Bezug
                        
Bezug
Fourierreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 15:18 Di 15.11.2011
Autor: fred97

Was hat Don Quixote Dir geschrieben: betrachte

g(x)=-17 für x<0 und g(x)=17 für $ [mm] x\ge [/mm] $ 0 auf dem Intervall $ [mm] [-\pi,\pi] [/mm] $ .

Warum die -17 für x<0 ? Darum: g ist eine ungerade Funktion. Und das bedeutet für die CosinusTerme was ?

FRED


Bezug
                                
Bezug
Fourierreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:55 Di 15.11.2011
Autor: Zeitlos

Bei einer ungeraden Funktion verschwinden die Cosinus-Terme...
mein Bedenken ist nur, dass ich mich durch diese Definition mit g(x)= -17 für x<0 ein bisschen der Angabe widersetze in der es ja heißt, dass ich die konstante Funktion g(x)= 17 darstellen soll...

wobei wenn ich g(x) = 17 für alle x definiere habe ich eine gerade Funktion, womit alle Sinus Terme wegfallen würden, was ja nicht geht weil ich ja eine Linearkombination aus Sinustermen erreichen will..

Bezug
                                        
Bezug
Fourierreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 20:09 Di 15.11.2011
Autor: donquijote


> Bei einer ungeraden Funktion verschwinden die
> Cosinus-Terme...
>  mein Bedenken ist nur, dass ich mich durch diese
> Definition mit g(x)= -17 für x<0 ein bisschen der Angabe
> widersetze in der es ja heißt, dass ich die konstante
> Funktion g(x)= 17 darstellen soll...
>  
> wobei wenn ich g(x) = 17 für alle x definiere habe ich
> eine gerade Funktion, womit alle Sinus Terme wegfallen
> würden, was ja nicht geht weil ich ja eine
> Linearkombination aus Sinustermen erreichen will..

Für eine konstante Funktion kriegst du eine Fourierreihe, die nur aus dem konstanten Term besteht.
Mit dem Ansatz, eine auf [mm] [0,\pi] [/mm] definierte Funktion "gespiegelt" auf [mm] [-\pi,0] [/mm] fortzusetzen bekommst die eine Fourierreihe, die nur aus Sinus-Termien besteht. Da die Fouriereihe auf [mm] [-\pi,\pi] [/mm] konvergiert, erhältst du auch Konvergenz, wenn du die Einschränkung auf [mm] [0,\pi] [/mm] betrachtest.
In deinem Beispiel konvergiert also die aus Sinus-Termen bestehende reihe in [mm] L^2([0,\pi]) [/mm] sowie punktweise auf [mm] (0,\pi) [/mm] gegen die Konstante 17.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de