www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Fourier-Transformation" - Fourierreihe, Imaginärteil
Fourierreihe, Imaginärteil < Fourier-Transformati < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fourierreihe, Imaginärteil: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:39 Do 11.06.2009
Autor: Tobus

Aufgabe
Entwickeln sie die Funktion [mm] f(x)=x-\pi [/mm] im Intervall [mm] [0,2\pi[ [/mm] in eine Fourierreihe. Zerlege sie diese in Real- und Imaginärteil un dzeigen sie, dass für [mm] x=\bruch{3\pi}{2} [/mm] die Leibnizsche Reihe [mm] \bruch{\pi}{2}=2*(1-\bruch{1}{3}+-...) [/mm] folgt

Hallo,
ich bin im Moment etwas ratlos warum hier nach dem Imaginärteil gefragt wird.
Ich habe die Koeffizienten bestimmt, und dann die Frourierreihe und komme auf:

f(x)=-2*sin(x)-sin(2x)

Ich gehe davon aus, dass dies falsch ist, da ich ja kein Imaginärteil habe.

Könnte mir jemand auf die Sprünge helfen ?

DANKE ;)

        
Bezug
Fourierreihe, Imaginärteil: Antwort
Status: (Antwort) fertig Status 
Datum: 15:17 Do 11.06.2009
Autor: MathePower

Hallo Tobus,


> Entwickeln sie die Funktion [mm]f(x)=x-\pi[/mm] im Intervall
> [mm][0,2\pi[[/mm] in eine Fourierreihe. Zerlege sie diese in Real-
> und Imaginärteil un dzeigen sie, dass für [mm]x=\bruch{3\pi}{2}[/mm]
> die Leibnizsche Reihe
> [mm]\bruch{\pi}{2}=2*(1-\bruch{1}{3}+-...)[/mm] folgt
>  Hallo,
>  ich bin im Moment etwas ratlos warum hier nach dem
> Imaginärteil gefragt wird.
>  Ich habe die Koeffizienten bestimmt, und dann die
> Frourierreihe und komme auf:
>  
> f(x)=-2*sin(x)-sin(2x)
>  
> Ich gehe davon aus, dass dies falsch ist, da ich ja kein
> Imaginärteil habe.


Die Fourierreihe einer reellen Funktion kann ja wohl keinen Imaginärteil haben.

Grund ist vielmehr der, daß die Fourierreihe nicht abbrechend ist.

Hier mußt Du die Koeffizienten über die komplexe Form berechnen.


>  
> Könnte mir jemand auf die Sprünge helfen ?


Nun, poste dazu Deine bisherigen Rechenschritte.


>  
> DANKE ;)


Gruß
MathePower

Bezug
                
Bezug
Fourierreihe, Imaginärteil: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:20 Do 11.06.2009
Autor: Tobus

also meine bisherigen Schritte:

[mm] f(x)=\bruch{a_{0}}{2}+\summe_{k=1}^{\infty}(a_{k}*cos(x*k)+b_{k}*sin(k*x)) [/mm]

[mm] a_{0}=0 [/mm]  
[mm] a_{k}=0 [/mm]  
[mm] b_{1}=\bruch{1}{\pi}*\integral_{0}^{2*\pi}{(x-\pi)*sin(1*x) dx}=-2 [/mm]  
[mm] b_{2}=-1 [/mm]  

und das zusammen ergibt dann mein Ergebnis vom ersten Post.

Meinst du mit komplexer Form der Koeffizienten: [mm] c_{n}=\bruch{a_{n}+i*b_{n}}{2} [/mm] ?

Wie mache ich nun weiter ?

DANKE


Bezug
                        
Bezug
Fourierreihe, Imaginärteil: Antwort
Status: (Antwort) fertig Status 
Datum: 16:49 Do 11.06.2009
Autor: MathePower

Hallo Tobus,

> also meine bisherigen Schritte:
>  
> [mm]f(x)=\bruch{a_{0}}{2}+\summe_{k=1}^{\infty}(a_{k}*cos(x*k)+b_{k}*sin(k*x))[/mm]
>  
> [mm]a_{0}=0[/mm]  
> [mm]a_{k}=0[/mm]  
> [mm]b_{1}=\bruch{1}{\pi}*\integral_{0}^{2*\pi}{(x-\pi)*sin(1*x) dx}=-2[/mm]
>  
> [mm]b_{2}=-1[/mm]  


Hier musst Du schon alle Koeffizienten berechnen:

[mm]b_{k}=\bruch{1}{\pi}*\integral_{0}^{2*\pi}{(x-\pi)*sin(k*x) dx}[/mm]



>
> und das zusammen ergibt dann mein Ergebnis vom ersten
> Post.
>  
> Meinst du mit komplexer Form der Koeffizienten:
> [mm]c_{n}=\bruch{a_{n}+i*b_{n}}{2}[/mm] ?


Ja.


>  
> Wie mache ich nun weiter ?


In der komplexen Form sieht das so aus:

[mm]c_{k}=\bruch{1}{2\pi}*\integral_{0}^{2*\pi}{(x-\pi)*e^{-i*k*x} \ dx}[/mm]

, wobei dann

[mm]a_{k}=c_{+k}+c_{-k}, \ b_{k}=i*\left(c_{+k}-c_{-k}\right)[/mm]

ist.


>  
> DANKE
>  


Gruß
MathePower

Bezug
                                
Bezug
Fourierreihe, Imaginärteil: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:19 Do 11.06.2009
Autor: Tobus

Ah ok, vielen Dank schonmal für die Hilfe.
Ich habe nun die komplexen Faktoren berechnet:

[mm] c_{k}=\bruch{1}{2\pi}*\integral_{0}^{2*\pi}{(x-\pi)*e^{-i*k*x} \ dx} [/mm] = [mm] \bruch{1}{k}*i [/mm]

und somit:

[mm] a_{k}=c_{+k}+c_{-k}=0 [/mm]
[mm] b_{k}=i*\left(c_{+k}-c_{-k}\right)=i*(\bruch{2}{k}*i)=\bruch{-2}{k} [/mm]

Kann ich nun so weiter rechnen: ?

[mm] f(x)=\bruch{a_{0}}{2}+\summe_{k=1}^{\infty}(a_{k}*cos(x*k)+b_{k}*sin(k*x)) [/mm]
[mm] =\summe_{k=1}^{\infty}(\bruch{-2}{k}*sin(k*x)) [/mm]

Stimmt das soweit mal ?

Bezug
                                        
Bezug
Fourierreihe, Imaginärteil: Antwort
Status: (Antwort) fertig Status 
Datum: 17:26 Do 11.06.2009
Autor: MathePower

Hallo Tobus,

> Ah ok, vielen Dank schonmal für die Hilfe.
>  Ich habe nun die komplexen Faktoren berechnet:
>  
> [mm]c_{k}=\bruch{1}{2\pi}*\integral_{0}^{2*\pi}{(x-\pi)*e^{-i*k*x} \ dx}[/mm]
> = [mm]\bruch{1}{k}*i[/mm]
>  
> und somit:
>  
> [mm]a_{k}=c_{+k}+c_{-k}=0[/mm]
>  
> [mm]b_{k}=i*\left(c_{+k}-c_{-k}\right)=i*(\bruch{2}{k}*i)=\bruch{-2}{k}[/mm]
>  
> Kann ich nun so weiter rechnen: ?
>  
> [mm]f(x)=\bruch{a_{0}}{2}+\summe_{k=1}^{\infty}(a_{k}*cos(x*k)+b_{k}*sin(k*x))[/mm]
>  [mm]=\summe_{k=1}^{\infty}(\bruch{-2}{k}*sin(k*x))[/mm]
>  
> Stimmt das soweit mal ?


Ja. [ok]


Gruß
MathePower

Bezug
                                                
Bezug
Fourierreihe, Imaginärteil: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:36 Do 11.06.2009
Autor: Tobus

DANKE den Rest schaffe ich alleine ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de