www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Fourierreihe bestimmen
Fourierreihe bestimmen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fourierreihe bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:08 Mo 12.11.2012
Autor: Trolli

Aufgabe
Gegeben sei die Funktion [mm] $f:\IR\to\IR$ [/mm] durch
[mm] $f(x)=\frac{(x-\pi)^2}{4}, x\in [0,2\pi]$ [/mm]
Bestimmen Sie die Fourierreihe $S(x)$.

Hallo,

da es eine gerade Funktion ist, reicht es aus [mm] $a_0$ [/mm] und [mm] $a_k$ [/mm] zu berrechnen.

[mm] $a_0=\frac{1}{\pi}*\integral_{0}^{2\pi}{\frac{(x-\pi)^2}{4} dx}=\frac{1}{\pi}*\integral_{0}^{2\pi}{\frac{(u)^2}{4} du}=\frac{1}{4\pi}*\integral_{0}^{2\pi}{u^2 du}=\frac{1}{4\pi}*\frac{1}{3}*\left[ u^3\right]^{2\pi}_0=\frac{1}{12\pi}*\left[ (x-\pi)^3 \right]^{2\pi}_0=\frac{2\pi^2}{12}$ [/mm]

Jetzt [mm] $a_k$: [/mm]
[mm] $a_k=\frac{1}{\pi}*\integral_{0}^{2\pi}{\frac{(x-\pi)^2}{4}*cos(kx) dx}=\frac{1}{4\pi}*\integral_{0}^{2\pi}{u^2*cos(kx) du}=\frac{1}{4\pi}\left(\left[u^2*1/k*sin(kx)\right]^{2\pi}_0-\integral_{0}^{2\pi}{2u*1/k*sin(kx) du}\right)$ [/mm]
[mm] $=\frac{1}{4k\pi}\left(0-\integral_{0}^{2\pi}{2u*sin(kx) du}\right)=-\frac{1}{4k\pi}\left(\left[-2u*1/k*cos(kx)\right]^{2\pi}_0-\integral_{0}^{2\pi}{-2*1/k*cos(kx) dx}\right)$ [/mm]
[mm] $=-\frac{1}{4k^2\pi}\left(\left[-2(x-\pi)*cos(kx)\right]^{2\pi}_0+2\integral_{0}^{2\pi}{cos(kx) dx}\right)=-\frac{1}{4k^2\pi}\left( -4\pi+2\left[1/k*sin(kx)\right]^{2\pi}_0\right)$ [/mm]
[mm] $=-\frac{2}{4k^2\pi}\left(\frac{-2k\pi}{k}+\frac{1}{k}\left[sin(kx)\right]^{2\pi}_0\right)=-\frac{2}{4k^3\pi}\left(-2k\pi +0\right)=\frac{1}{k^2}=a_k$ [/mm]


[mm] $S(x)=\frac{a_0}{2}+\summe_{k=1}^{\infty}(a_k*cos(kx))$ [/mm]
[mm] $\Rightarrow \frac{2\pi^2}{24}+\summe_{k=1}^{\infty}\frac{cos(kx)}{k^2}$ [/mm]

Wäre nett wenn mal jemand drüberschauen kann ob alles korrekt ist. Habe hoffentlich keine Fehler beim eintippen gemacht. Danke schonmal für Tipps.

        
Bezug
Fourierreihe bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:58 Mo 12.11.2012
Autor: MathePower

Hallo Troli,

> Gegeben sei die Funktion [mm]f:\IR\to\IR[/mm] durch
>  [mm]f(x)=\frac{(x-\pi)^2}{4}, x\in [0,2\pi][/mm]
>  Bestimmen Sie die
> Fourierreihe [mm]S(x)[/mm].
>  Hallo,
>  
> da es eine gerade Funktion ist, reicht es aus [mm]a_0[/mm] und [mm]a_k[/mm]
> zu berrechnen.
>  
> [mm]a_0=\frac{1}{\pi}*\integral_{0}^{2\pi}{\frac{(x-\pi)^2}{4} dx}=\frac{1}{\pi}*\integral_{0}^{2\pi}{\frac{(u)^2}{4} du}=\frac{1}{4\pi}*\integral_{0}^{2\pi}{u^2 du}=\frac{1}{4\pi}*\frac{1}{3}*\left[ u^3\right]^{2\pi}_0=\frac{1}{12\pi}*\left[ (x-\pi)^3 \right]^{2\pi}_0=\frac{2\pi^2}{12}[/mm]

>


Hier hast Du offenbar [mm]u:=x-\pi[/mm] gesetzt.

Dann lautet das aber so:

[mm]a_0=\frac{1}{\pi}*\integral_{0}^{2\pi}{\frac{(x-\pi)^2}{4} dx}=\frac{1}{\pi}*\integral_{0}^{2\pi}{\frac{(u)^2}{4} \ d\blue{x}}=\frac{1}{4\pi}*\integral_{0}^{2\pi}{u^2 du}=\frac{1}{4\pi}*\frac{1}{3}*\left[ u^3\right]^{2\pi}_0=\frac{1}{12\pi}*\left[ (x-\pi)^3 \right]^{2\pi}_0=\frac{2\pi^2}{12}[/mm]


> Jetzt [mm]a_k[/mm]:
>  
> [mm]a_k=\frac{1}{\pi}*\integral_{0}^{2\pi}{\frac{(x-\pi)^2}{4}*cos(kx) dx}=\frac{1}{4\pi}*\integral_{0}^{2\pi}{u^2*cos(kx) du}=\frac{1}{4\pi}\left(\left[u^2*1/k*sin(kx)\right]^{2\pi}_0-\integral_{0}^{2\pi}{2u*1/k*sin(kx) du}\right)[/mm]
>


Analog hier:

[mm]a_k=\frac{1}{\pi}*\integral_{0}^{2\pi}{\frac{(x-\pi)^2}{4}*cos(kx) dx}=\frac{1}{4\pi}*\integral_{0}^{2\pi}{u^2*cos(kx) \ d\blue{x}}=\frac{1}{4\pi}\left(\left[u^2*1/k*sin(kx)\right]^{2\pi}_0-\integral_{0}^{2\pi}{2u*1/k*sin(kx) \ d\blue{x}}\right)[/mm]


> [mm]=\frac{1}{4k\pi}\left(0-\integral_{0}^{2\pi}{2u*sin(kx) du}\right)=-\frac{1}{4k\pi}\left(\left[-2u*1/k*cos(kx)\right]^{2\pi}_0-\integral_{0}^{2\pi}{-2*1/k*cos(kx) dx}\right)[/mm]
>


Und hier:

[mm]=\frac{1}{4k\pi}\left(0-\integral_{0}^{2\pi}{2u*sin(kx) \ d\blue{x}}\right)=-\frac{1}{4k\pi}\left(\left[-2u*1/k*cos(kx)\right]^{2\pi}_0-\integral_{0}^{2\pi}{-2*1/k*cos(kx) dx}\right)[/mm]


> [mm]=-\frac{1}{4k^2\pi}\left(\left[-2(x-\pi)*cos(kx)\right]^{2\pi}_0+2\integral_{0}^{2\pi}{cos(kx) dx}\right)=-\frac{1}{4k^2\pi}\left( -4\pi+2\left[1/k*sin(kx)\right]^{2\pi}_0\right)[/mm]
>  
> [mm]=-\frac{2}{4k^2\pi}\left(\frac{-2k\pi}{k}+\frac{1}{k}\left[sin(kx)\right]^{2\pi}_0\right)=-\frac{2}{4k^3\pi}\left(-2k\pi +0\right)=\frac{1}{k^2}=a_k[/mm]
>  
>
> [mm]S(x)=\frac{a_0}{2}+\summe_{k=1}^{\infty}(a_k*cos(kx))[/mm]
>  [mm]\Rightarrow \frac{2\pi^2}{24}+\summe_{k=1}^{\infty}\frac{cos(kx)}{k^2}[/mm]
>  


[ok]


> Wäre nett wenn mal jemand drüberschauen kann ob alles
> korrekt ist. Habe hoffentlich keine Fehler beim eintippen
> gemacht. Danke schonmal für Tipps.


Gruss
MathePower

Bezug
                
Bezug
Fourierreihe bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:08 Mo 12.11.2012
Autor: Trolli


>  
>
> Hier hast Du offenbar [mm]u:=x-\pi[/mm] gesetzt.
>  
> Dann lautet das aber so:
>  
> [mm]a_0=\frac{1}{\pi}*\integral_{0}^{2\pi}{\frac{(x-\pi)^2}{4} dx}=\frac{1}{\pi}*\integral_{0}^{2\pi}{\frac{(u)^2}{4} \ d\blue{x}}=\frac{1}{4\pi}*\integral_{0}^{2\pi}{u^2 du}=\frac{1}{4\pi}*\frac{1}{3}*\left[ u^3\right]^{2\pi}_0=\frac{1}{12\pi}*\left[ (x-\pi)^3 \right]^{2\pi}_0=\frac{2\pi^2}{12}[/mm]
>  
>

Kannst du das bitte noch kurz begründen. Da beim substituieren $dx=du$ ist, habe ich sonst immer $du$ geschrieben, da das Integral ja jetzt von u abhängig ist. Warum muss ich $dx$ schreiben?


Bezug
                        
Bezug
Fourierreihe bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:17 Mo 12.11.2012
Autor: MathePower

Hallo Trolli,

> >  

> >
> > Hier hast Du offenbar [mm]u:=x-\pi[/mm] gesetzt.
>  >  
> > Dann lautet das aber so:
>  >  
> > [mm]a_0=\frac{1}{\pi}*\integral_{0}^{2\pi}{\frac{(x-\pi)^2}{4} dx}=\frac{1}{\pi}*\integral_{0}^{2\pi}{\frac{(u)^2}{4} \ d\blue{x}}=\frac{1}{4\pi}*\integral_{0}^{2\pi}{u^2 du}=\frac{1}{4\pi}*\frac{1}{3}*\left[ u^3\right]^{2\pi}_0=\frac{1}{12\pi}*\left[ (x-\pi)^3 \right]^{2\pi}_0=\frac{2\pi^2}{12}[/mm]
>  
> >  

> >
>
> Kannst du das bitte noch kurz begründen. Da beim
> substituieren [mm]dx=du[/mm] ist, habe ich sonst immer [mm]du[/mm]
> geschrieben, da das Integral ja jetzt von u abhängig ist.
> Warum muss ich [mm]dx[/mm] schreiben?
>  


Hier kannst Du für dx=du schreiben,
da Du nur u im Integranden hast.

In Deinen weiteren Berechnungen hast Du u und x im Integranden.
Wenn Du schon substituierst, dann auch das "x".


Gruss
MathePower

Bezug
                                
Bezug
Fourierreihe bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:26 Mo 12.11.2012
Autor: Trolli

Aufgabe
Zeigen Sie für $x=0$ und [mm] $x=\pi$, [/mm] dass
[mm] $\summe_{n=1}^{\infty}\frac{1}{n^2}=\frac{\pi^2}{6}$ [/mm] und [mm] $\summe_{n=1}^{\infty}\frac{(-1)^{n-1}}{n^2}=\frac{\pi^2}{12}$ [/mm]

Ok, danke.
Hierbei bräuchte mal einen Anstoss wie man vorzugehen hat. Setze ich die x-Werte in mein [mm] $a_k$, [/mm] enstehen die obigen Summen. Aber wie komme ich auf die rechte Seite der Gleichung?

Bezug
                                        
Bezug
Fourierreihe bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:40 Mo 12.11.2012
Autor: MathePower

Hallo Trolli,

> Zeigen Sie für [mm]x=0[/mm] und [mm]x=\pi[/mm], dass
>  [mm]\summe_{n=1}^{\infty}\frac{1}{n^2}=\frac{\pi^2}{6}[/mm] und
> [mm]\summe_{n=1}^{\infty}\frac{(-1)^{n-1}}{n^2}=\frac{\pi^2}{12}[/mm]
>  Ok, danke.
>  Hierbei bräuchte mal einen Anstoss wie man vorzugehen
> hat. Setze ich die x-Werte in mein [mm]a_k[/mm], enstehen die obigen
> Summen. Aber wie komme ich auf die rechte Seite der
> Gleichung?


Auf der linken Seite setzt Du einen speziellen x-Wert ein,
um diese Reihe zu erhalten. Auf der rechten Seite ist der
Funktionswert dieses speziellen x-Wertes zu bilden.


Gruss
MathePower

Bezug
                                        
Bezug
Fourierreihe bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:14 Mo 12.11.2012
Autor: leduart

Hallo
Du weisst doch dass die TR die Funktion ergibt, die du an jeder Stelle direkt ausrechnen kannst.
welches x musst du in die Reihe einsetzen damit $ [mm] \summe_{n=1}^{\infty}\frac{1}{n^2}= [/mm] $ vorkommt? welches damit
$ [mm] \summe_{n=1}^{\infty}\frac{(-1)^{n-1}}{n^2} [/mm] $ in der TR steht, die in die ursprüngliche fkt. einsetzen.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de