www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Elektrotechnik" - Fouriertransformation (Deltaf)
Fouriertransformation (Deltaf) < Elektrotechnik < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Elektrotechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fouriertransformation (Deltaf): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:03 Sa 30.10.2010
Autor: qsxqsx

Hallo Leute,

Ich soll die Fouriertransformierte des folgenden Signals berechnen, komme aber auf was ganz anderes:
f(t) = [mm] \summe_{k=-\infty}^{\infty} e^{-|t-2k|} [/mm]


also ich habe das so gemacht
F(s) = [mm] \integral_{-\infty}^{\infty}{ (\summe_{k=-\infty}^{\infty} e^{-|t-2k|} )e^{-jwt} dt } [/mm]

Dann unterscheiden ob t-2k grösser oder kleiner Null ist. Da t und 2k jeweils durchlaufen werden, ist das abhängig von dem k bzw. t. Ich vertausche zuerst Integral und Summenzeichen, dann integriere ich nach t von [2k bis [mm] \infty] [/mm] und andrerseits mit anderem vorzeichen von [mm] [-\infty [/mm] bis 2k].

= [mm] \summe_{k=-\infty}^{\infty} e^{2k}*\bruch{e^{-t(1+jw)}}{-(1+jw)} [/mm] mit Grenzen [2k bis [mm] \infty] [/mm]
+
[mm] \summe_{k=-\infty}^{\infty} e^{-2k}*\bruch{e^{-t(-1+jw)}}{-(-1+jw)} [/mm]
mit Grenzen [mm] [-\infty [/mm] bis 2k]
= [mm] \summe_{k=-\infty}^{\infty} \bruch{2*e^{-2kjw} }{w^{2} + 1} [/mm]
(EDIT: Natürlich hier die Summe über alle k, was ich vergessen habe...)


Die Lösung sagt aber
F(s) = [mm] \bruch{2*\pi}{w^{2} + 1}*\summe_{k = -\infty}^{\infty}[\delta(w-k*\pi)] [/mm]

Danke&Gruss

Qsxqsx






        
Bezug
Fouriertransformation (Deltaf): Normierung?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:23 Sa 30.10.2010
Autor: Infinit

Hallo qsxqsx,
ist hier schon eine Normierung vorgenommen worden für das Zeitsignal? Irgendwas stimmt hier nicht, der Exponent der e-Funktion ist eine Zeitfunktion, sollte aber dimensionslos sein und es wird was nicht Dimensionsbehaftetes, nämlich das k, davon subtrahiert.
Viele Grüße,
Infinit



Bezug
                
Bezug
Fouriertransformation (Deltaf): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:09 Sa 30.10.2010
Autor: qsxqsx

Hallo Infinit,

Nö, es steht nichts weiter...habs nochmals durchgecheckt, ist richtig abgeschrieben.
Es geht ja mehr um die Zahlen bzw. das Theoretische, nicht?

Gruss

Bezug
        
Bezug
Fouriertransformation (Deltaf): Antwort
Status: (Antwort) fertig Status 
Datum: 20:32 Sa 30.10.2010
Autor: mathfunnel

Hallo Qsxqsx,

versuche es mal mit der Faltung:

$f(t)= [mm] \summe_{k=-\infty}^{\infty} e^{-|t-2k|} [/mm] = [mm] \sum\limits_{k=-\infty}^{\infty} e^{-|t|}\*\delta(t-2k) [/mm] =  [mm] e^{-|t|}\*\sum\limits_{k=-\infty}^{\infty} \delta(t-2k)$ [/mm]

Kennst Du den Dirac-Kamm?
Ich denke, dass Dir der Hinweis reicht, oder?

LG mathfunnel


Bezug
                
Bezug
Fouriertransformation (Deltaf): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:56 So 31.10.2010
Autor: qsxqsx

Hm ja habe jetzt gerade gesehen das in meiner Theorie der Dirac Kamm kommt und mich reingelesen. Trotzdem: Ist den mein Lösungsweg bzw. mein Ergebnis jetzt auch richtig? Ich bin doch richtig vorgegangen?

Dann müsste aber [mm] \pi*\delta(w [/mm] - [mm] k*\pi) [/mm] = [mm] e^{-jw2k} [/mm] sein??! Seh ich irgendwie nicht...

Gruss

Bezug
                        
Bezug
Fouriertransformation (Deltaf): Antwort
Status: (Antwort) fertig Status 
Datum: 17:54 So 31.10.2010
Autor: mathfunnel

Hallo Qsxqsx,

> Hm ja habe jetzt gerade gesehen das in meiner Theorie der Dirac Kamm kommt und mich reingelesen. Trotzdem: Ist den mein Lösungsweg bzw. mein Ergebnis jetzt auch richtig? Ich bin doch richtig vorgegangen?

Selbstverständlich! Ich dachte nur, dass Du die Gleichheit der Ergebnisse erkennst, wenn ich
den Dirac-Kamm erwähne.

Der Zusammenhang mit Deiner Lösung ist folgender:

[mm] ($\mathcal [/mm] {F}$ für Fourier-Transformation und [mm] $D_p [/mm] := [mm] \sum\limits_{k=-\infty}^{\infty} \delta(t-pk)$): [/mm]

[mm] $\mathcal{F}(D_2) [/mm] = [mm] \sum\limits_{k=-\infty}^{\infty} e^{-jw2k} [/mm] = [mm] \frac{1}{2}D_\frac{1}{2}$ [/mm] (Die Reihe macht nur Sinn wenn man sie als Reihe von Distributionen auffasst.)

$f(t) = [mm] \sum\limits_{k=-\infty}^{\infty} e^{-|t|}\*\delta(t-2k) [/mm] =  [mm] e^{-|t|}\*D_2$ [/mm]

Mit dem Faltungssatz folgt:

[mm] $\mathcal [/mm] {F}(f) = [mm] \mathcal {F}(e^{-|t|})\mathcal{F}(D_2) [/mm] = [mm] (\frac{2}{1+\omega^2}) (\frac{1}{2}D_\frac{1}{2})$ [/mm]


Mit  [mm] $D_\frac{1}{2}(\omega) [/mm] = [mm] 2\pi\sum\limits_{k=-\infty}^{\infty} \delta(\omega-\pi [/mm] k) $

ergibt sich insgesamt

[mm] $\mathcal [/mm] {F}(f) = [mm] \frac{2\pi}{1+\omega^2} \sum\limits_{k=-\infty}^{\infty} \delta(\omega-k\pi)$ [/mm]

LG mathfunnel


Bezug
                                
Bezug
Fouriertransformation (Deltaf): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:04 So 31.10.2010
Autor: qsxqsx

Sehr nett, danke.

Ich wollt irgendwie nicht sehen das es das selbe ist weil ja die Deltafunktion an der Stelle wo sie einen Wert hat theoretisch unendlich ist und [mm] e^{j*a} [/mm] vom Betrag 1 ist und irgendwie hab ich dann hald kurzerhand gedacht das kann nicht sein...

Gruss

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Elektrotechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de