www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Frage zu 2 Polynomen n Grades
Frage zu 2 Polynomen n Grades < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Frage zu 2 Polynomen n Grades: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:35 Mi 04.06.2014
Autor: pc_doctor

Hallo,
ich habe eine Verständnisfrage.
Wenn ich ein Polynom 5. Grades habe ( reelles Polynom ) und dann eine Gerade , dann kann ich doch höchstens 5 , mindestens 0 Schnittpunkte haben , oder ?

Mir fällt kein Ansatz ein , wie ich das beweisen soll.Wie geht man bei solch einer Aufgabe vor?

Bräuchte einen Ansatz.

Vielen Dank im Voraus.

        
Bezug
Frage zu 2 Polynomen n Grades: Antwort
Status: (Antwort) fertig Status 
Datum: 19:45 Mi 04.06.2014
Autor: Diophant

Hallo,

> Hallo,
> ich habe eine Verständnisfrage.
> Wenn ich ein Polynom 5. Grades habe ( reelles Polynom )
> und dann eine Gerade , dann kann ich doch höchstens 5 ,
> mindestens 0 Schnittpunkte haben , oder ?

Das ist schon einmal falsch. Höchstens fünf ist ja richtig, aber kein Schnittpunkt ist in diesem Fall nicht möglich, und du könntest dir ruhig selbst überlegen, weshalb dies so ist.

>

> Mir fällt kein Ansatz ein , wie ich das beweisen soll.Wie
> geht man bei solch einer Aufgabe vor?

>

Wie berechnest du Schnittpunkte? Welche Art von Gleichung ergibt sich hier und welche Sätze kennnst du über die Anzahl der Lösungen solcher Gleichungen in Abhängigkeit der Ordnung?

BTW: Heißt das in der Aufgabenstellung wirklich Schnittpunkte oder meinst du vielleicht gemeinsame Punkte? Das ist ein Unterschied, der hier durchaus von Bedeutung ist.


Gruß, Diophant

Bezug
                
Bezug
Frage zu 2 Polynomen n Grades: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:50 Mi 04.06.2014
Autor: pc_doctor

Hallo,

stimmt, darauf hätte ich selbst kommen können.
Und ja , es ist nach Schnittpunkten gefragt. Schnittpunkte habe ich immer berechnet, indem ich die beiden Funktionen ( hier: Polynome) gleichsetze und dann nach x (bzw. nach der Variable) umgestellt habe.



Bezug
                        
Bezug
Frage zu 2 Polynomen n Grades: Antwort
Status: (Antwort) fertig Status 
Datum: 20:14 Mi 04.06.2014
Autor: Diophant

Hallo,

> Hallo,

>

> stimmt, darauf hätte ich selbst kommen können.
> Und ja , es ist nach Schnittpunkten gefragt. Schnittpunkte
> habe ich immer berechnet, indem ich die beiden Funktionen (
> hier: Polynome) gleichsetze und dann nach x (bzw. nach der
> Variable) umgestellt habe.

Ja: und wenn du das mit Polynomen tust, dann gibt das eine algebraische Gleichung. Darüber gibt es so einiges zu sagen, z.B. was minimale die Anzahl der reellen Lösungen angeht in Abhängigkeit davon, ob der Grad gerade oder ungerade ist. Weiter sollte klar sein, wie viele reelle Lösungen eine solche Gleichung maximal haben kann. Wenn die Frage Schnittpunkt/Berührpunkt nicht interessiert, dann ist die algebraische Vielfachheit von Lösungen hier auch (noch) nicht wichtig, obwohl es sich immer lohnt, sich damit zu beschäftigen.

Auf jeden Fall sind das alles Dinge, die man an jeder Ecke und in unzähligen Lehrbüchern (und dort dann am Anfang) findet. Von daher steht man da mal wieder etwas ratlos vor deinem Problem und fragt sich, ob du da schon die einschlägige Literatur befragt hast und das alles nicht verstanden hast (was ich so recht nicht glauben mag), oder ob da mal wieder das Forum als Buch-Ersatz herhalten soll. :-)

Gruß, Diophant  

Bezug
                                
Bezug
Frage zu 2 Polynomen n Grades: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:25 Mi 04.06.2014
Autor: pc_doctor

Hallo, vielen Dank für die Antwort.

Werde mal die alten Bücher rausholen müssen, ist schon ne Weile her :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de