Frage zu Bruchzahlen < Klassen 5-7 < Schule < Mathe < Vorhilfe
|
In meinem Mathe-Lehrbuch steht: bei einem Bruch [mm]\bruch{a}{b}[/mm] muss [mm]a,b \in \IN[/mm] sein. In demselben Buch jedoch findet man einen Bruch bei dem weder der Zähler noch der Nenner eine natürliche Zahl ist: [mm]\bruch{\bruch{1}{2}}{\bruch{1}{4}}[/mm]. Kann mir das jemand erklären?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 13:50 Fr 15.10.2004 | Autor: | Thomie |
> In meinem Mathe-Lehrbuch steht: bei einem Bruch
> [mm]\bruch{a}{b}[/mm] muss [mm]a,b \in \IN[/mm] sein. In demselben Buch
> jedoch findet man einen Bruch bei dem weder der Zähler noch
> der Nenner eine natürliche Zahl ist:
> [mm]\bruch{\bruch{1}{2}}{\bruch{1}{4}}[/mm]. Kann mir das jemand
> erklären?
Im Grunde genommen ist der Bruchstrich nur eine Kurzschreibweise für eine Division.
Man erhält dann die "Aufgabe" "Teile a durch b".
Dass diese Aufgabe aber nicht immer lösbar ist, hat man sich darauf geeinigt:
Die Aufgabe wird so weit gerechnet, wie es geht.
Wenn ich 4 durch 8 teilen soll, ist das das gleiche, wie wenn ich 1 durch 2 teilen soll.
Oder: [mm]\frac 48=\frac 12[/mm].
Also: Statt 4/8 kann man auch rechnen 12345/5 (=2468/1) oder 0,12/0,01
Die Frage ist nun: Wann kann ich nicht mehr weiterrechnen?
Und die Antwort darauf: wenn a ganzzahlig ist und b natürlich, ausserdem sollten idealerweise a und b teilerfremd sein, also nicht beispielsweise beide durch 2 zu teilen seien (also 2/4 kann ich weiterrechnen).
Ich hoffe, ich hab zu deinem Verständnis beigetragen
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 23:55 Sa 16.10.2004 | Autor: | maximinus |
Vielen Dank Thomie, ich hab's jetzt verstanden! Ebenso dank an informix!
Gruß
|
|
|
|
|
Hallo maximinus,
> In meinem Mathe-Lehrbuch steht: bei einem Bruch
> [mm]\bruch{a}{b}[/mm] muss [mm]a,b \in \IN[/mm] sein. In demselben Buch
> jedoch findet man einen Bruch bei dem weder der Zähler noch
> der Nenner eine natürliche Zahl ist:
> [mm]\bruch{\bruch{1}{2}}{\bruch{1}{4}}[/mm]. Kann mir das jemand
> erklären?
>
Ein Bruch ist stets eine andere Schreibweise für die Division:
daher bedeutet [mm]\bruch{\bruch{1}{2}}{\bruch{1}{4}}= {\bruch{1}{2}}:{\bruch{1}{4}[/mm]
Und nun kommen die Rechenregeln zur Bruchrechnung ins Spiel:
Ein Bruch wird durch einen anderen Bruch geteilt, indem man den ersten Bruch mit dem Kehrwert des zweiten malnimmt.
[mm]{\bruch{1}{2}}:{\bruch{1}{4}={\bruch{1}{2}}*{\bruch{4}{1}= \bruch{2}{1} [/mm]
Du siehst, jetzt kannst du sogar noch kürzen!
Also grundsätzlich gilt: aus einem Doppelbruch kann man immer einen "normalen" Bruch machen, der dann tatsächlich im Zähler und im Nenner nur noch eine natürliche Zahl enthält.
Hilft dir das weiter? Sonst frage einfach nochmal nach.
|
|
|
|