www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Diskrete Optimierung" - Frage zu Optimierung?
Frage zu Optimierung? < Optimierung < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Optimierung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Frage zu Optimierung?: min f(x)
Status: (Frage) beantwortet Status 
Datum: 15:53 Mi 28.02.2007
Autor: viktory_hh

Aufgabe
kann es sein dass es gilt:  
min [mm] f_1(x_1) [/mm] + ... + [mm] f_n(x_n) [/mm] == min [mm] f_1(x_1) [/mm] + ... min [mm] f_n(x_n) [/mm] ???

bzw. auch mit Nebenbedingungen die genau so gtrennt von einander sind?

Ich meine dass es geht, bin aber nicht 100% sicher?

        
Bezug
Frage zu Optimierung?: Antwort
Status: (Antwort) fertig Status 
Datum: 08:50 Do 01.03.2007
Autor: BJJ

Hallo,

wenn ich die Frage richtig verstanden hab, dann gilt es im allgemeinen nicht. Gegenbeispiel:

Sei [mm] f_1(x) [/mm] = [mm] x^2 [/mm] und [mm] f_2(x) [/mm] = (x - [mm] 1)^2. [/mm] Es ist

f(x) = [mm] f_1(x) [/mm] + [mm] f_2(x) [/mm] = [mm] x^2 [/mm] + (x - [mm] 1)^2 [/mm] = 2 [mm] x^2 [/mm] - 2x + 1.

Die Funktion f hat ein Minimum im Punkt x = 1/2 mit f(1/2) = 1. Auf der anderen Seite gilt [mm] f_1(0) [/mm] = [mm] f_2(1) [/mm] = 0. Damit haben wir min [mm] {f_1(x) + f_2(x)} [/mm] = 1 und min [mm] f_1(x) [/mm] + min [mm] f_2(x) [/mm] = 0, also Ungleichheit.

Gruss

bjj

Bezug
        
Bezug
Frage zu Optimierung?: Antwort
Status: (Antwort) fertig Status 
Datum: 09:11 Do 01.03.2007
Autor: Martin243

Hallo,

als Ergänzung zu BJJs Antwort:
Die [mm] $f_i$ [/mm] müssten im betrachteten Intervall dieselbe Monotonie besitzen, müssten also erstmal alle monoton sein.


Gruß
Martin

Bezug
        
Bezug
Frage zu Optimierung?: Antwort
Status: (Antwort) fertig Status 
Datum: 09:26 Do 01.03.2007
Autor: angela.h.b.

Hallo,

wenn die Frage so gemeint ist, wie ich mir das zusammenreime, gilt es doch:

ich lese die [mm] x_i [/mm] als unabhängige Variable, irgendwie so:


[mm] f:\IR^n [/mm] --> [mm] \IR, [/mm] def. durch

[mm] f\vektor{x_1 \\...\\ x_n}:=f_1(x_1)+...+f_n(x_n), [/mm]    mit [mm] f_i:\IR [/mm] --> [mm] \IR. [/mm]

Gruß v. Angela

Bezug
                
Bezug
Frage zu Optimierung?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:41 Do 01.03.2007
Autor: viktory_hh

also, die [mm] f_i [/mm] sind alle einzelne funktionen auf unabhängigen Variablen [mm] x_i [/mm]
mit [mm] x_i \in R^{n_i}. [/mm]



Bezug
                        
Bezug
Frage zu Optimierung?: Antwort
Status: (Antwort) fertig Status 
Datum: 07:22 Fr 02.03.2007
Autor: angela.h.b.


> also, die [mm]f_i[/mm] sind alle einzelne funktionen auf
> unabhängigen Variablen [mm]x_i[/mm]
>  mit [mm]x_i \in R^{n_i}.[/mm]

Dann ist meine Antwort die zur Frage passende.

Gruß v. Angela

Bezug
                                
Bezug
Frage zu Optimierung?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:22 So 04.03.2007
Autor: viktory_hh

Und was war denn nun deine Antwort. Gilt jetzt das was ich geschrieben habe oder nicht?

Bezug
                                        
Bezug
Frage zu Optimierung?: Antwort
Status: (Antwort) fertig Status 
Datum: 20:29 So 04.03.2007
Autor: angela.h.b.


> Und was war denn nun deine Antwort. Gilt jetzt das was ich
> geschrieben habe oder nicht?

Ja.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Optimierung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de