www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Frage zu einer Matrix-Definiti
Frage zu einer Matrix-Definiti < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Frage zu einer Matrix-Definiti: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:06 Mi 29.01.2014
Autor: senmeis

Hi,

folgende Beschreibung stammt aus einem Fachartikel:

L(k| [mm] \emptyset) [/mm] = [mm] (\emptyset-k)^{t}(R^{-1}-R^{-1}P^{t}(PR^{-1}P^{t})^{-1}PR^{-1})( \emptyset-k) [/mm]          (9)

By defining A to be an (N-2) x N matrix whose rows span the solution space to:

[mm] PR^{-1}x [/mm] = 0, x in [mm] R^{N} [/mm]

(9) can be rewritten as:

L(k| [mm] \emptyset) [/mm] = [mm] (\emptyset-k)^{t}(R^{-1}A^{t}(AR^{-1}A^{t})^{-1}AR^{-1})( \emptyset-k) [/mm]

Kann mir jemand aufklären, wie A überhaupt definiert ist?

Gruss
Senmeis

•Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Frage zu einer Matrix-Definiti: Antwort
Status: (Antwort) fertig Status 
Datum: 15:14 Mi 29.01.2014
Autor: fred97


> Hi,
>  
> folgende Beschreibung stammt aus einem Fachartikel:
>  
> L(k| [mm]\emptyset)[/mm] =
> [mm](\emptyset-k)^{t}(R^{-1}-R^{-1}P^{t}(PR^{-1}P^{t})^{-1}PR^{-1})( \emptyset-k)[/mm]
>          (9)
>  
> By defining A to be an (N-2) x N matrix whose rows span the
> solution space to:
>  
> [mm]PR^{-1}x[/mm] = 0, x in [mm]R^{N}[/mm]
>  
> (9) can be rewritten as:
>  
> L(k| [mm]\emptyset)[/mm] =
> [mm](\emptyset-k)^{t}(R^{-1}A^{t}(AR^{-1}A^{t})^{-1}AR^{-1})( \emptyset-k)[/mm]
>  
> Kann mir jemand aufklären, wie A überhaupt definiert
> ist?

Die Menge U:= [mm] \{ x \in \IR^N: PR^{-1}x=0\} [/mm] ist ein Untervektorraum des [mm] \IR^N. [/mm]

Sei B eine Basis von U. Die Elemente von U schreibe als Zeilen in eine Matrix. Fertig ist ein solches A.

FRED

>  
> Gruss
>  Senmeis
>  
> •Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt


Bezug
                
Bezug
Frage zu einer Matrix-Definiti: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:19 Mo 03.02.2014
Autor: senmeis

Nach der Beschreibung soll x eine Nx1 Matrix sein, also N Zeilen. A hat aber (N-2) Zeilen. Wie werden diese zusammengepasst?

Gruss
Senmeis


Bezug
                        
Bezug
Frage zu einer Matrix-Definiti: Antwort
Status: (Antwort) fertig Status 
Datum: 15:27 Mo 03.02.2014
Autor: fred97


> Nach der Beschreibung soll x eine Nx1 Matrix sein, also N
> Zeilen. A hat aber (N-2) Zeilen. Wie werden diese
> zusammengepasst?

Wenn der Unterraum U:= $ [mm] \{ x \in \IR^N: PR^{-1}x=0\} [/mm] $  die Dimension N-2 hat, dann passt doch alles !

FRED

>  
> Gruss
>  Senmeis
>  


Bezug
                                
Bezug
Frage zu einer Matrix-Definiti: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 13:34 Mi 05.02.2014
Autor: senmeis

Hast Du folgendes gemeint?

A hat (N-2) Zeilen. Jede Zeile ist eine Lösung von [mm] PR^{-1}x [/mm] = 0, also N dimensionaler Vektor. Insgesammt haben wir (N-2) x N.

Aber wieso führt dies dazu, dass L(k| [mm] \emptyset) [/mm] = [mm] (\emptyset-k)^{t}(R^{-1}A^{t}(AR^{-1}A^{t})^{-1}AR^{-1})( \emptyset-k)? [/mm]

Gruss
Senmeis


Bezug
                                        
Bezug
Frage zu einer Matrix-Definiti: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Fr 07.02.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                                        
Bezug
Frage zu einer Matrix-Definiti: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:46 Mo 10.02.2014
Autor: senmeis

Ich Suche Hilfe weiter denn dies ist der letzte Schritt.

Senmeis


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de