www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Frage zur Anordnungsaxiomen
Frage zur Anordnungsaxiomen < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Frage zur Anordnungsaxiomen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 19:05 Do 08.11.2012
Autor: missjanine

Aufgabe
a,b,c,d sind Elemente von [mm] \IR [/mm]
a) Falls a,b < 0 ist, gilt a<b [mm] \Rightarrow [/mm] a² > b²
b) 0<a<b [mm] \Rightarrow \bruch{1}{a}>\bruch{1}{b} [/mm]
c) a<b, [mm] c\ge [/mm] d [mm] \Rightarrow [/mm] a-c<b-d

Folgende Anordnungsaxiome hab ich:
1) [mm] x\in\IR [/mm]
x>0 x=0 -x>0
2) x>0, y>0 [mm] \Rightarrow [/mm] x+y>0
3) x>0, y>0 [mm] \Rightarrow [/mm] x*y>0

Und:
x>y [mm] :\gdw [/mm] x-y>0
x<y [mm] :\gdw [/mm] y>x
x [mm] \ge [/mm] y [mm] :\gdw [/mm] x>y oder x=y
x [mm] \le [/mm] y [mm] :\gdw [/mm] x<y oder x=y

Bei a) kann ich auch mit Zahlen schreiben:
-2<-1 [mm] \Rightarrow [/mm] -2²>-1²
dann würde die Behauptung stimmen. Aber wie beweist man das?
Bei b) könnt ich schreiben 0<1<2 [mm] \Rightarrow [/mm] 1>1/2
Bei c) 1<2, 2 [mm] \ge [/mm] 1 [mm] \Rightarrow [/mm] 1-2<2-1

        
Bezug
Frage zur Anordnungsaxiomen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:26 Do 08.11.2012
Autor: chrisno

Hallo,
nun wollte ich mal wissen, ob ich das nach über 30 Jahren noch schaffe.
Ich habe mich nur mit a) auseinander gesetzt. Die Vorüberlegung: aus dem <0 muss ein >0 werden, sonst lassen sich die Axiome und Folgerungen nicht anwenden. Da es um einen Vergleich gegenüber 0 geht, wird der Schritt vor dem Ziel lauten: [mm] $a^2 [/mm] - [mm] b^2 [/mm] > 0$ Das riecht nach dritter binomischer Formel, also muss ich zu $(a-b)(a+b)$ kommen. Es wird dann ein wenig anders, wie Du gleich siehst.

Jede Umformung lässt sich mit den von Dir gegebenen Axiomen und Folgerungen begründen. Das nachzuvollziehen überlasse ich Dir. Tu es.

1. a < b => b > a => b-a > 0
2. a < 0 => 0 > a => 0-a > 0 => -a > 0
3. genau so für b ... => -b > 0
4. mit 2 und 3 => -a-b > 0
5. mit 1 und 4 => (b-a)(-a-b) > 0 ( da ist binomi 3)
6. ...

Bei b könnte es sinnvoll sein, erst einmal 1 > 0 zu zeigen, ich bin aber nicht sicher. Probier erst einmal selbst.

Bei c würde ich eine Fallunterscheidung machen. Erst einmal c > d zum warm werden.
Das läuft ähnlich wie a, nur etwas einfacher. Wie der Fall c = d angegangen wird, sehe ich nicht sofort. Da das = in den Axiomen nur einmal vorkommt, würde ich a-c = b-d und a-c > b-d zum Widerspruch bringen.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de