www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Frage zur part. Integration
Frage zur part. Integration < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Frage zur part. Integration: Frage
Status: (Frage) beantwortet Status 
Datum: 14:02 So 13.03.2005
Autor: st_0783

Hallo,
ich habe eine grundlegende Frag zur partiellen Integration. Leider funzt die Suche im Moment nicht. Und in den Mathebüchern... Na ja, Mathebücher halt...

Also:
[mm] \integral [/mm] f'*g = f*g- [mm] \integral [/mm] f*g'

Das ist ja klar. Aber wenn ich integriert habe, habe ich ja wieder ein Integralzeichen und dahinter eine Multiplikation. Kann ich denn nach dem integrieren das Produkt hinter dem Integralzeichen einzeln integrieren? Denn sonst müsste ich ja nochmal die partielle Integration anwenden und dann hätte ich ja wieder das Gleiche.

Danke für die Antworten...

        
Bezug
Frage zur part. Integration: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:07 So 13.03.2005
Autor: Fabian

Hallo st_0783

Es wäre hilfreich , wenn du uns ein Beispiel lieferst , dann können wir dir hier besser helfen.

Gruß Fabian

Bezug
                
Bezug
Frage zur part. Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:26 So 13.03.2005
Autor: st_0783

Ok,
ein Beispiel habe ich, aber die Frage war ja eher eine generelle Frage..
Hier ein Beispiel:
[mm] \integral \wurzel{3}*lnx [/mm] dx

Nach der partiellen Ableitung kriege ich folgendes raus:

[mm] lnx*\bruch{2}{3}x^\bruch{3}{2}-\integral 1/x*\bruch{2}{3}x^\bruch{3}{2} [/mm] dx
  
Was mache ich jetzt mit dem Term hinter dem Integralzeichen? In diesem Fall kann ich das Produkt vorher noch zusammenfassen, aber wenn das nun mal bei einer Aufgabe nicht geht. Kann ich dann jeden Teil auch einzeln integrieren? Also hier in dem Beispiel: KÖNNTE ich 1/x integrieren und [mm] \bruch{2}{3}x^\bruch{3}{2} [/mm] auch noch mal einzeln integrieren???
  

Bezug
                        
Bezug
Frage zur part. Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 14:45 So 13.03.2005
Autor: Fabian

Hallo

Erstmal zu deinem Beispiel:

Ich hab das jetzt nicht nachgerechnet , aber das Integral darfst du nicht einzeln integrieren. Hier kann man es natürlich zusammenfassen , aber wenn das nicht geht , dann mußt du entweder noch einmal partiell integrieren oder du wählst eine andere Substitution.


> [mm]lnx*\bruch{2}{3}x^\bruch{3}{2}-\integral 1/x*\bruch{2}{3}x^\bruch{3}{2}[/mm]


Sinn und Zweck der partiellen Integration ist es ja , dass das Integral, auf der rechten Seite der Integrationsformel , elementar lösbar ist , oder noch besser , ein Grund- oder Stammintegral ist.

Gruß Fabian

Bezug
                        
Bezug
Frage zur part. Integration: Antwort zur Aufgabe
Status: (Antwort) fertig Status 
Datum: 17:55 So 13.03.2005
Autor: Zwerglein

Hi, st_Zahlenkombination,

>  Hier ein Beispiel:
>  [mm]\integral \wurzel{3}*lnx[/mm] dx
>  

Vermute, da liegt ein Tippfehler vor und es soll
[mm] \integral \wurzel{x}*lnx [/mm] dx
heißen!

> Nach der partiellen Ableitung kriege ich folgendes raus:
>  
> [mm]lnx*\bruch{2}{3}x^\bruch{3}{2}-\integral 1/x*\bruch{2}{3}x^\bruch{3}{2}[/mm]
> dx
>    
> Was mache ich jetzt mit dem Term hinter dem
> Integralzeichen? In diesem Fall kann ich das Produkt vorher
> noch zusammenfassen, aber wenn das nun mal bei einer
> Aufgabe nicht geht.

Naja: Dann gibt's viele Möglichkeiten:
- Entweder "funzt" diese Methode (part.Int.) überhaupt nicht!
- Manchmal merkt man erst nach 3 bis 4 Rechenschritten, dass man nochmal von vorne anfangen mus, z.B. mit Substitution.
- Oder Du musst ein 2.Mal partiell integrieren (kommt sehr oft vor!)

- Wenn alles das nicht zur Lösung führt, gibt's immer noch mehrere Möglichkeiten, z.B.:
- das Integral lässt sich wirklich mit den bisher besprochenen Methoden nicht ausrechnen. Beispiel: [mm] \integral {e^{-x^{2}}dx} [/mm]
- oder vielleicht hast Du übersehen, dass die Stammfunktion vorgeben war und Du sie durch Ableitung (F'(x) = f(x)) nachweisen sollst!

> Kann ich dann jeden Teil auch einzeln
> integrieren? Also hier in dem Beispiel: KÖNNTE ich 1/x
> integrieren und [mm]\bruch{2}{3}x^\bruch{3}{2}[/mm] auch noch mal
> einzeln integrieren???

NEEEEIIINNN! NEVER!! NIE!!! Dann lieber gar nichts tun! Dann verlierst Du wenigstens keine Zeit!  


Bezug
        
Bezug
Frage zur part. Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 17:51 So 13.03.2005
Autor: oliver.schmidt

Hallo,

ich glaube du hast dich da verrechnet

aus
[mm] f(x)=\wurzel{3}*x [/mm]
[mm] f'(x)=\wurzel{3} [/mm]

g(x)=ln x
[mm] g'(x)=\bruch{1}{x} [/mm]

[mm] \Rightarrow [/mm]

[mm] \integral_{}^{} {\wurzel{3}*ln (x) dx} [/mm] = [mm] \wurzel{3}*x*ln(x)- \integral_{}^{} {\wurzel{3}*x*\bruch{1}{x} dx}=\wurzel{3}*x*ln(x)- \integral_{}^{} {\wurzel{3} dx}=\wurzel{3}*x*ln(x)-\wurzel{3}*x [/mm]


achte bitte darauf, dass [mm] \wurzel{3} [/mm] eine Konstante ist , folglich  [mm] \integral_{}^{} {\wurzel{3} dx}=x*\wurzel{3} [/mm] ist.


wie du siehst war Sinn der Partiellen Integration, auf der rechten Seite ein Integral zu erhalten, das wesentlich einfacher lösbar ist als das Ausgangsintegral.


Gruß
OLIVER

Bezug
                
Bezug
Frage zur part. Integration: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:58 So 13.03.2005
Autor: st_0783

Ok, vielen Dank!
Mittlerweile ist mir doch einiges klarer geworden.
Der vermutete Tippfehler war richtig! Also, es war ein Tippfehler.

P.S. Die Zehlenkombination ist der Geburtsmonat und das Jahr.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de